Harnessing ultra-low-frequency vibration energy by a rolling-swing electromagnetic energy harvester with counter-rotations

被引:0
|
作者
Yin, Peilun [1 ]
Tang, Lihua [1 ]
Li, Zhongjie [2 ]
Xia, Cuipeng [1 ]
Li, Zifan [1 ]
Aw, Kean Chin [1 ]
机构
[1] Univ Auckland, Dept Mech & Mechatron Engn, Auckland 1010, New Zealand
[2] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200444, Peoples R China
关键词
Electromagnetic energy harvesting; Ultra-low frequency; Rolling-swing; Counter-rotation; DESIGN; SPEED;
D O I
10.1016/j.apenergy.2024.124507
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
While ultra-low-frequency vibration is a common energy source, electromagnetic energy harvesting from such vibrations presents a challenge due to the low output performance caused by the slow variation of the magnetic field. In this work, we propose a rolling-swing electromagnetic energy harvester (RS-EMEH) that creates the counter-rotations between magnets and coils, thereby amplifying the magnetic field variation within a single cycle of ultra-low-frequency excitation. Simplified dynamic modeling, rigid-body simulation and finite-element analysis are performed to confirm its working mechanism. A unique alternating pole arrangement of magnets is adopted that enhances the output voltage by 2 times as compared to the traditional uniform pole arrangement. Moreover, the experiment of the RS-EMEH prototype validates the above simulation and demonstrates the positive correlation between electrical output and excitation in terms of both frequency (1.10 Hz to 1.50 Hz) and acceleration amplitude (0.05 g to 0.40 g). Further experiment shows that the harvested energy by the RS-EMEH can sustain the operation of a thermometer and calculator simultaneously for 161.3 s under the excitation at 0.4 g, 1.4 Hz for 92.6 s. Specifically, the RS-EMEH can provide milliwatt-level output at the walking speed <= 3.5 km/ h, sufficient to power portable wireless low-power electronic devices. The findings of this work unveil the promising power generation and application potential of the rolling-swing electromagnetic energy harvesters for self-powered systems subject to ultra-low-frequency vibrations.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Frequency tuning design for vibration-driven electromagnetic energy harvester
    Lee, Byung-Chul
    Chung, Gwiy-Sang
    IET RENEWABLE POWER GENERATION, 2015, 9 (07) : 801 - 808
  • [42] Frequency tunable electromagnetic vibration energy harvester based on diamagnetic levitation
    Jiaxiang Zhang
    Hang Shao
    Long Zhang
    Deping Liu
    Kean C. Aw
    Yufeng Su
    Applied Physics A, 2024, 130
  • [43] A multi-frequency sandwich type electromagnetic vibration energy harvester
    Chen, Jingdong
    Chen, Di
    Yuan, Tao
    Chen, Xiang
    APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [44] A multi-frequency electromagnetic vibration energy harvester based on ferrofluid
    Chen, Long
    Wang, Siqi
    Yuan, Fang
    Li, Decai
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2023, 71 (01) : 81 - 90
  • [45] Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester
    Fan, Kangqi
    Cai, Meiling
    Liu, Haiyan
    Zhang, Yiwei
    ENERGY, 2019, 169 : 356 - 368
  • [46] Electromagnetic Energy Harvester for Low Frequency Vibrations using MEMS
    Kumar, Ankita
    Balpande, S. S.
    Anjankar, S. C.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTING AND VIRTUALIZATION (ICCCV) 2016, 2016, 79 : 785 - 792
  • [47] A low-frequency vibration-to-electrical energy harvester
    Zhang, Min
    Brignac, Daniel
    Ajmera, Pratul
    Lian, Kun
    NANOSENSORS AND MICROSENSORS FOR BIO-SYSTEMS 2008, 2008, 6931
  • [48] Low-Frequency Meandering Piezoelectric Vibration Energy Harvester
    Berdy, David F.
    Srisungsitthisunti, Pornsak
    Jung, Byunghoo
    Xu, Xianfan
    Rhoads, Jeffrey F.
    Peroulis, Dimitrios
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (05) : 846 - 858
  • [49] Comprehensive Characterisation of a Low-Frequency-Vibration Energy Harvester
    Plaza, Aitor
    Iriarte, Xabier
    Castellano-Aldave, Carlos
    Carlosena, Alfonso
    SENSORS, 2024, 24 (12)
  • [50] L-shaped cantilever beam piezoelectric energy harvester with frequency up-conversion for ultra-low-frequency rotating environments
    Zhang, Pan
    Lin, Wanrong
    Xie, Zhengqiu
    Cao, Huajun
    Huang, Wenbin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 225