Robust multi-view clustering with hyper-Laplacian regularization

被引:0
|
作者
Yu, Xiao [1 ,2 ]
Liu, Hui [1 ,2 ]
Zhang, Yan [1 ]
Gao, Yuan [2 ,3 ]
Zhang, Caiming [2 ,4 ]
机构
[1] Shandong Univ Finance & Econ, Jinan 250014, Peoples R China
[2] Shandong Key Lab Lightweight Intelligent Comp & V, Jinan 250014, Peoples R China
[3] Shensi Shandong Med Informat Technol Co Ltd, Jinan 250098, Peoples R China
[4] Shandong Univ, Jinan 250101, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Auto-weighted scheme; Robustness; Hypergraph; Laplacian matrix; GRAPH;
D O I
10.1016/j.ins.2024.121718
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-view clustering has attracted much attention in diverse fields of study for its excellent performance in clustering. However, there are still several issues to be solved. First, many existing methods struggle to handle the presence of noise, which is often encountered in real-world datasets. Second, some methods assume that each view is equally important in the clustering process, overlooking the diversity that multiple views can bring to the table. Third, traditional methods tend to rely on pairwise similarity relationships, which may not fully explore the underlying clustering structures among samples. In this paper, we propose a multi-view clustering method named Robust Multi-view Clustering with Hyper-Laplacian Regularization (RICHIE) to solve these problems. RICHIE indirectly learns the unified representation matrix and adopts a matrix norm to enhance the robustness of the algorithm. Besides, RICHIE can automatically assign the optimal weights to each view, allowing for effective utilization of the diverse multi-view data. Furthermore, RICHIE utilizes hyper-Laplacian regularization on the unified representation matrix to fully exploit the similarity relationship among the data points. In addition, an optimization algorithm is proposed to solve the problem. Experimental evaluations on eight different datasets using 10 baseline methods demonstrated the effectiveness of our algorithm.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Robust Tensor Recovery for Incomplete Multi-View Clustering
    Shen, Qiangqiang
    Xu, Tingting
    Liang, Yongsheng
    Chen, Yongyong
    He, Zhenyu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3856 - 3870
  • [32] Robust multi-view fuzzy clustering via softmin
    Zhang, Hongyuan
    Zhang, Rui
    Li, Xuelong
    Xu, Yueshen
    NEUROCOMPUTING, 2021, 458 : 47 - 55
  • [33] Robust Joint Graph Learning for Multi-View Clustering
    He, Yanfang
    Yusof, Umi Kalsom
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 722 - 734
  • [34] Robust self-tuning multi-view clustering
    Yuan, Changan
    Zhu, Yonghua
    Zhong, Zhi
    Zheng, Wei
    Zhu, Xiaofeng
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (02): : 489 - 512
  • [35] Enriched Robust Multi-View Kernel Subspace Clustering
    Zhang, Mengyuan
    Liu, Kai
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1992 - 2001
  • [36] Robust Tensor Learning for Multi-View Spectral Clustering
    Xie, Deyan
    Li, Zibao
    Sun, Yingkun
    Song, Wei
    ELECTRONICS, 2024, 13 (11)
  • [37] Robust Auto-Weighted Multi-View Clustering
    Ren, Pengzhen
    Xiao, Yun
    Xu, Pengfei
    Guo, Jun
    Chen, Xiaojiang
    Wang, Xin
    Fang, Dingyi
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2644 - 2650
  • [38] Robust self-tuning multi-view clustering
    Changan Yuan
    Yonghua Zhu
    Zhi Zhong
    Wei Zheng
    Xiaofeng Zhu
    World Wide Web, 2022, 25 : 489 - 512
  • [39] Multi-View Robust Feature Learning for Data Clustering
    Zhao, Liang
    Zhao, Tianyang
    Sun, Tingting
    Liu, Zhuo
    Chen, Zhikui
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1750 - 1754
  • [40] Latent multi-view subspace clustering based on Laplacian regularized representation
    Guo, Wei
    Che, Hangjun
    Leung, Man-Fai
    Mu, Nankun
    Dai, Xiangguang
    Feng, Yuming
    2023 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE, ICACI, 2023,