A method for S-wave velocity estimation based on equivalent elastic modulus inversion

被引:0
|
作者
Xiong, Xiaojun [1 ]
Lin, Kai [1 ]
He, Zhenhua [1 ]
机构
[1] Key Lab of Earth Exploration and Information Techniques of Ministry of Education, Chengdu University of Technology, Chengdu, Sichuan 610059, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:723 / 727
相关论文
共 50 条
  • [21] Multi-source elastic full waveform inversion based on P-wave and S-wave separation
    Huang S.
    Ren Z.
    Li Z.
    Gu B.
    Li H.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2019, 54 (05): : 1084 - 1093and1105
  • [22] The ZH ratio method for long-period seismic data: inversion for S-wave velocity structure
    Yano, Tomoko
    Tanimoto, T.
    Rivera, L.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2009, 179 (01) : 413 - 424
  • [23] Hypocentral parameters and velocity estimation in the western Swiss Alps by simultaneous inversion of P- and S-wave data
    Maurer, H
    Kradolfer, U
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1996, 86 (01) : 32 - 42
  • [24] Equivalent elastic modulus method of masonry based on stratified homogenization
    Teng D.-Y.
    Yang N.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2019, 49 (02): : 408 - 415
  • [25] Joint inversion of PP-and PS-waves based on the iteration of ratio of S-wave velocity and P-wave velocity
    Du Q.
    Huo G.
    Chen G.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2016, 51 (01): : 97 - 105
  • [26] A characterization method for equivalent elastic modulus of rock based on elastic strain energy
    Qin, Tao
    Wang, Yiwei
    Hou, Xiangang
    Duan, Yanwei
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [27] S-wave velocity inversion and prediction using a deep hybrid neural network
    Jun Wang
    Junxing Cao
    Shuang Zhao
    Qiaomu Qi
    Science China Earth Sciences, 2022, 65 : 724 - 741
  • [28] S-wave velocity inversion and prediction using a deep hybrid neural network
    Wang, Jun
    Cao, Junxing
    Zhao, Shuang
    Qi, Qiaomu
    SCIENCE CHINA-EARTH SCIENCES, 2022, 65 (04) : 724 - 741
  • [29] S-wave velocity inversion and prediction using a deep hybrid neural network
    Jun WANG
    Junxing CAO
    Shuang ZHAO
    Qiaomu QI
    Science China(Earth Sciences), 2022, 65 (04) : 724 - 741
  • [30] Study on virtual inversion of s-wave velocity structure by parallel genetic algorithm
    Dong, Lian-Cheng
    Tao, Xia-Xin
    Li, Guang-Ying
    Lv, Da-Gang
    Journal of Harbin Institute of Technology (New Series), 2009, 16 (SUPPL. 1) : 167 - 170