The characteristics analysis and feasible improvement strategy evaluation for ammonia-diesel dual-fuel engine under heavy load and high ammonia ratio conditions

被引:2
|
作者
Jin, Zhuoying [1 ]
Mi, Shijie [1 ]
Zhou, Dezhi [2 ]
Qian, Yong [1 ]
Lu, Xingcai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Key Lab Power Machinery MOE, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, UM SJTU Joint Inst, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Ammonia-diesel dual-fuel engine; Heavy engine load; High ammonia ratio; Injection strategy improvement; Hydrogen introduction; COMBUSTION; INJECTION; IGNITION;
D O I
10.1016/j.fuel.2024.133911
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The decarbonization and reduction of dependence on fossil fuel for transportation industry relies on the rapid and large-scale adoption of carbon free fuels. This paper conducts systematical simulations for the ammonia- diesel dual-fuel engine with ammonia port injection and diesel direct injection with a validated numerical framework based on OpenFOAM and the Lib-ICE codes, focusing on the heavy load and high ammonia ratio conditions with significant carbon reduction potential. Facing the challenges of enlarged unburned NH3 emissions and low thermal efficiency under heavy load and high ammonia ratio conditions, the aim of this study is to explore the characteristics and feasible improvement strategies under this special and crucial operation condition. Wherein, the engine load and displacement of this study is 16 bar Indicated Mean Effective Pressure (IMEP) approximate 90 % of the maximum load and 1.327 L, respectively. Firstly, the reference cases with 70 %, 80 % and 90 % ammonia energy ratios (AER) are investigated. The energy balance and emissions analysis indicate that a significant portion of ammonia energy remains unutilized, leading to suboptimal greenhouse gas reduction effectiveness and low thermal efficiency. Given the limited diesel mass, optimizing diesel distribution for ignition and subsequent ammonia energy activation becomes crucial. Detailed analysis of unburned ammonia region indicates the potential of improvement through diesel injection strategy for AER70 and AER80 conditions, while the hydrogen introduction strategy is then proposed for AER90 condition. The comparison of advanced SOI and diesel split injection strategy under AER70 condition shows the superiority of split injection since comparing with the original case, it achieves 85.38 %, 99.88 % unburned NH3 reduction, 41.48 %, 81.70 % greenhouse gas reduction, 15.61 %, 13.45 % ITE increase with SOI1 =-60 degrees CA ATDC, SOI2 =-10,-15 degrees CA ATDC conditions, respectively. Under AER80 condition, due to proper diesel distribution and reactivity stratification, the case with SOI =-30 degrees CA ATDC obtains best improvement effectiveness, resulting in notable 16.41 % ITE increase, 95.81 % NH3 and 69.55 % N2O reduction. Under AER90 condition, hydrogen is introduced and homogenously premixed with ammonia through port injection. Hydrogen mainly makes a difference to later ammonia combustion, as evidenced by the increases in OH radical peak and second peak of heat release with the rise of HER. However, continuous hydrogen introduction fails to achieve significant improvement effectiveness. In conclusion, through proper combustion control strategies, the high ammonia ratio (70 %, 80 %) is promising for practical application with greenhouse gas reduction advantage and proper thermal efficiency under heavy load condition.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Insights into the combustion characteristics, emission formation sources, and optimization strategy of an ammonia-diesel dual-fuel engine under high ammonia ratio conditions
    Jin, Zhuoying
    Mi, Shijie
    Zhou, Dezhi
    Zhu, Jizhen
    Schirru, Andrea
    Zhao, Wenbin
    Qian, Yong
    Lucchini, Tommaso
    Lu, Xingcai
    APPLIED ENERGY, 2024, 373
  • [2] Combustion and Emission Characteristics of an Ammonia-Diesel Dual-Fuel Engine under High Ammonia Substitution Ratios
    Zhang, Shouzhen
    Yang, Rui
    Tang, Qinglong
    Lv, Zhijie
    Liu, Haifeng
    Yue, Zongyu
    Yao, Mingfa
    ENERGY & FUELS, 2025, 39 (13) : 6559 - 6571
  • [3] Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine
    Jin, Shouying
    Wu, Binyang
    Zi, Zhenyuan
    Yang, Puze
    Shi, Taifeng
    Zhang, Junhong
    FUEL, 2023, 341
  • [4] Numerical analysis for optimizing combustion strategy in an ammonia-diesel dual-fuel engine
    Shin, Jisoo
    Park, Sungwook
    ENERGY CONVERSION AND MANAGEMENT, 2023, 284
  • [5] Experimental study on the combustion and emission characteristics of ammonia-diesel dual fuel engine under high ammonia energy ratio conditions
    Zheng, Liang
    Mi, Shijie
    Li, Hongmei
    Tan, Xiaoxing
    Qian, Yong
    Feng, Mingzhi
    Lu, Xingcai
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 114
  • [6] Experimental investigation of the effect of ammonia substitution ratio on an ammonia-diesel dual-fuel engine performance
    Liu, Junheng
    Liu, Jinlong
    JOURNAL OF CLEANER PRODUCTION, 2024, 434
  • [7] Optimizations of energy fraction and injection strategy in the ammonia-diesel dual-fuel engine
    Xu, Xiaoyan
    Wang, Zixin
    Qu, Wenjing
    Song, Meijia
    Fang, Yuan
    Feng, Liyan
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 112
  • [8] Flame characteristics and abnormal combustion of ammonia-diesel dual-fuel engine with considering ammonia energy fractions
    Chen, Lin
    Zhao, Wenkai
    Zhang, Ren
    Wei, Haiqiao
    Jiaying, Pan
    APPLIED THERMAL ENGINEERING, 2024, 245
  • [9] Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy
    Shin, Jisoo
    Park, Sungwook
    ENERGY, 2024, 289
  • [10] Experimental study for optimizing EGR strategy in an ammonia-diesel dual-fuel engine under different altitudes
    Nie, Xuexuan
    Bi, Yuhua
    Shen, Lizhong
    Lei, Jilin
    Wan, Mingding
    Xiao, Yuhan
    Chen, Guisheng
    ENERGY, 2024, 313