Experimental investigation of the effect of ammonia substitution ratio on an ammonia-diesel dual-fuel engine performance

被引:28
|
作者
Liu, Junheng [1 ]
Liu, Jinlong [2 ,3 ,4 ,5 ,6 ]
机构
[1] Jiangsu Univ, Sch Automot & Traff Engn, Zhenjiang 212013, Peoples R China
[2] Zhejiang Univ, Key Lab Clean Energy & Carbon Neutral Zhejiang Pro, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Jiaxing Res Inst, Jiaxing 314031, Peoples R China
[4] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[5] Zhejiang Univ, Power Machinery & Vehicular Engn Inst, Hangzhou 310027, Peoples R China
[6] Zhejiang Univ, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual-fuel engine; Ammonia-diesel; ammonia substitution ratio; Combustion process; emission performance; PARAMETERS; EMISSIONS; HYDROGEN;
D O I
10.1016/j.jclepro.2023.140274
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This research experimentally examines an ammonia-diesel dual fuel system, not widely covered in existing literature but acknowledged as an effective approach to reduce engine carbon footprints in alignment with global decarbonization trends, focusing on enhancing understanding of performance, combustion, and emission characteristics vital for designing and optimizing these engines for commercialization. The results indicate that in an ammonia-air mixture atmosphere, diesel undergoes a prolonged ignition process, enhancing the role of premixed combustion. Increasing ammonia substitution at constant speed and load reduces the weight of mixing-controlled combustion, leading to larger areas in the chamber where diesel flames cannot reach. Ammonia oxidation mainly occurs near the diesel flame, as overly lean ammonia-air mixtures fail to sustain stable flame propagation. This results in considerable unburned ammonia emissions, particularly in regions beyond diesel flame reach and engine crevices, adversely affecting combustion efficiency and diminishing the thermal efficiency advantages of such operation. Furthermore, while ammonia combustion contributes to fuel-borne nitrogen oxides (NOx) formation, the overall NOx emissions from ammonia-diesel engines are reduced due to lower combustion temperatures and the deNOx properties of amino groups. However, the partial oxidation of ammonia during the late expansion stroke generates significant levels of nitrous oxide (N2O), a greenhouse gas, in the emissions, counteracting the intended reduction of carbon dioxide. These experimental findings highlight the necessity of focusing on both improving in-cylinder combustion quality and developing effective aftertreatment systems for NH3 and N2O capture, as crucial steps towards enhancing the environmental performance and market viability of ammonia-diesel dual fuel engines.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine
    Jin, Shouying
    Wu, Binyang
    Zi, Zhenyuan
    Yang, Puze
    Shi, Taifeng
    Zhang, Junhong
    [J]. FUEL, 2023, 341
  • [2] Effect of ammonia energy ratio and diesel pilot-injection strategy on the performance of ammonia-diesel dual fuel engine
    Chen, Xu
    Miao, Xuelong
    Di, Yage
    Zheng, Jinbao
    Zhou, Jian
    [J]. ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 6461 - 6476
  • [3] Optical diagnostics in impact of ammonia energy ratio and diesel split ratio on combustion process and flame propagation in an Ammonia-Diesel Dual-Fuel engine
    Liu, Xu
    Wang, Qian
    Zhong, Wenjun
    Jiang, Peng
    Xu, Min
    Guo, Botian
    [J]. FUEL, 2024, 364
  • [4] Numerical investigation on energy ratios and injection strategies of an ammonia-diesel dual-fuel marine engine
    Hu, Zewen
    Dong, Dongsheng
    Wei, Wenwen
    Zhang, Hanyuyang
    Wei, Feng
    Zhou, Mengni
    Li, Gesheng
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 70 : 522 - 536
  • [5] Experimental study on ammonia-diesel co-combustion in a dual-fuel compression ignition engine
    Jamrozik, Arkadiusz
    Tutak, Wojciech
    Pyrc, Michal
    Grab-Rogaliński, Karol
    [J]. Journal of the Energy Institute, 2024,
  • [6] Study on the Impact of Ammonia-Diesel Dual-Fuel Combustion on Performance of a Medium-Speed Diesel Engine
    Xiao, Hua
    Ying, Wenxuan
    Chen, Aiguo
    Chen, Guansheng
    Liu, Yang
    Lyu, Zhaochun
    Qiao, Zengyin
    Li, Jun
    Zhou, Zhenwei
    Deng, Xi
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (05)
  • [7] Effect of ammonia energy ratio and load on combustion and emissions of an ammonia/diesel dual-fuel engine
    [J]. Zhang, Zhiqing (zhangzhiqing64@163.com), 1600, Elsevier Ltd (302):
  • [8] Optimizations of energy fraction and injection strategy in the ammonia-diesel dual-fuel engine
    Xu, Xiaoyan
    Wang, Zixin
    Qu, Wenjing
    Song, Meijia
    Fang, Yuan
    Feng, Liyan
    [J]. JOURNAL OF THE ENERGY INSTITUTE, 2024, 112
  • [9] Numerical analysis for optimizing combustion strategy in an ammonia-diesel dual-fuel engine
    Shin, Jisoo
    Park, Sungwook
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2023, 284
  • [10] Study on the effect of turbulent jet combustion chamber on combustion characteristics at different ammonia energy ratio and optimization of an ammonia-diesel dual-fuel engine
    Yang, Puze
    Luo, Yinmi
    Jin, Shouying
    Zi, Zhenyuan
    Wu, Binyang
    [J]. JOURNAL OF THE ENERGY INSTITUTE, 2024, 112