Realization of ultrawide omnidirectional photonic band gap in multiple one-dimensional photonic crystals

被引:0
|
作者
Lee, Hyun-Yong [1 ]
Nam, Gi-Yeon [1 ]
机构
[1] Center for Functional Nano Fine Chemicals, Faculty of Applied Chemical Engineering, Chonnam National University, 300 Yongbong Dong, Kwangju 500-757, Korea, Republic of
来源
Journal of Applied Physics | 2006年 / 100卷 / 08期
关键词
Theoretical and experimental investigations have shown that the omnidirectional photonic band gap (omni-PBG) of one-dimensional photonic crystals (1D PCs) can be enlarged by including multiple-periodic structures. These structures; consisting of Si-Si O2 alternating layers with multiple periods; 1; 2; M; have great potential for ultrawide omnireflectors operating in the infrared frequency range. To confirm the effect of multiple periods in the 1D PCs; we prepared two types of 16-pair; SiSi O2 1D PCs with a single period of 1 =426.9 nm and 2 =306.9 nm; and one type of 16-pair 1D PC with double periods-the combination of eight-pair 1 and eight-pair 2. Theoretically; the normalized frequency range for omni-PBG (Δω) in double PC is enhanced by approximately twice that in the single PC. That is; Δω increases from 0.086 to 0.166; which corresponds to the wavelength range (Δλ) from 520 to 980 nm for =407.7 nm. Measured reflectance (R) spectra are in a good agreement with the calculated results. For example; the R spectrum of SiSi O2 double 1D PC (8-pair 1 +8 -pair 2: 1 =426.9 nm; =306.9; nm; and filling factor =0.406) exhibits an ultrawide PBG over the wavelength range of 1050-2500 nm for TE polarization at the incident angle of 5°. © 2006 American Institute of Physics;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [31] Extension of photonic band gaps in one-dimensional photonic crystals
    V. A. Tolmachev
    T. S. Perova
    Optics and Spectroscopy, 2006, 101 : 791 - 796
  • [32] Extension of photonic band gaps in one-dimensional photonic crystals
    Tolmachev, V. A.
    Perova, T. S.
    OPTICS AND SPECTROSCOPY, 2006, 101 (05) : 791 - 796
  • [33] Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure
    Zhang, Hai-Feng
    Liu, Shao-Bin
    Kong, Xiang-Kun
    Bian, Bo-Rui
    Dai, Yi
    PHYSICS OF PLASMAS, 2012, 19 (11)
  • [34] Investigating the Omnidirectional Photonic Band Gap in One-Dimensional Superconductor-Dielectric Photonic Crystals with a Modified Ternary Fibonacci Quasiperiodic Structure
    Zhang, Hai-Feng
    Liu, Shao-Bin
    Yang, Huan
    Li, Hai-Ming
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2013, 26 (12) : 3391 - 3400
  • [35] Omnidirectional photonic bandgap in one-dimensional photonic crystals containing hyperbolic metamaterials
    Lu, Guang
    Zhou, Xiachen
    Zhao, Yunpeng
    Zhang, Kaiyuan
    Zhou, Haiyang
    Li, Junyang
    Diao, Chao
    Liu, Fen
    Wu, Ailing
    Du, Guiqiang
    OPTICS EXPRESS, 2021, 29 (20) : 31915 - 31923
  • [36] One dimensional photonic band gap material as an omnidirectional reflector
    Kumar, V.
    Singh, Kh S.
    Ojha, S. P.
    INDIAN JOURNAL OF PHYSICS, 2011, 85 (12) : 1811 - 1816
  • [37] Investigation of photonic band gap properties of one-dimensional magnetized plasma spherical photonic crystals
    Zhu, Tian-Qi
    Zhang, Jia-Tao
    Zhang, Hai-Feng
    WAVES IN RANDOM AND COMPLEX MEDIA, 2023,
  • [38] Photonic band gap properties of one-dimensional photonic quasicrystals containing Nematic liquid crystals
    Trabelsi, Y.
    Ben Ali, N.
    Segovia-Chaves, Francis
    Vinck Posada, Herbert
    RESULTS IN PHYSICS, 2020, 19
  • [39] Theoretical study on the photonic band gap in one-dimensional photonic crystals with graded multilayer structure
    Fan Chun-Zhen
    Wang Jun-Qiao
    He Jin-Na
    Ding Pei
    Liang Er-Jun
    CHINESE PHYSICS B, 2013, 22 (07)
  • [40] Theoretical study on the photonic band gap in one-dimensional photonic crystals with graded multilayer structure
    范春珍
    王俊俏
    何金娜
    丁佩
    梁二军
    Chinese Physics B, 2013, 22 (07) : 246 - 250