Prediction of Ionospheric Scintillations Using Machine Learning Techniques during Solar Cycle 24 across the Equatorial Anomaly

被引:0
|
作者
Nasurudiin, Sebwato [1 ,2 ]
Yoshikawa, Akimasa [3 ]
Elsaid, Ahmed [4 ,5 ]
Mahrous, Ayman [1 ,6 ]
机构
[1] Egypt Japan Univ Sci & Technol E JUST, Inst Basic & Appl Sci, Dept Space Environm, New Borg El Arab City 21934, Egypt
[2] Islamic Univ Uganda IUIU, Fac Sci, Dept Phys, Kumi Rd,POB 2555, Mbale, Uganda
[3] Kyushu Univ, Dept Earth & Planetary Sci, Fukuoka 8190395, Japan
[4] Egypt Japan Univ Sci & Technol E JUST, Inst Basic & Appl Sci, Dept Appl & Computat Math, New Borg El Arab City 21934, Egypt
[5] Mansoura Univ, Fac Engn, Dept Math & Engn Phys, Mansoura 35516, Egypt
[6] Helwan Univ, Fac Sci, Dept Phys, Cairo 11795, Egypt
关键词
machine learning; ensemble learning techniques; ionospheric scintillation; Random Forest algorithm; eXtreme Gradient Boosting algorithm; ELECTRIC-FIELD; IRREGULARITIES;
D O I
10.3390/atmos15101213
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ionospheric scintillation is a pressing issue in space weather studies due to its diverse effects on positioning, navigation, and timing (PNT) systems. Developing an accurate and timely prediction model for this event is crucial. In this work, we developed two machine learning models for the prediction of ionospheric scintillation events at the equatorial anomaly during the maximum and minimum phases of solar cycle 24. The models developed in this study are the Random Forest (RF) algorithm and the eXtreme Gradient Boosting (XGBoost) algorithm. The models take inputs based on the solar wind parameters obtained from the OMNI Web database from the years 2010-2017 and Pc5 wave power obtained from the Bear Island (BJN) magnetometer station. We retrieved data from the Scintillation Network and Decision Aid (SCINDA) receiver in Egypt from which the S4 index was computed to quantify amplitude scintillations that were utilized as the target in the model development. Out-of-sample model testing was performed to evaluate the prediction accuracy of the models on unseen data after training. The similarity between the observed and predicted scintillation events, quantified by the R2 score, was 0.66 and 0.74 for the RF and XGBoost models, respectively. The corresponding Root Mean Square Errors (RMSEs) associated with the models were 0.01 and 0.01 for the RF and XGBoost models, respectively. The similarity in error shows that the XGBoost model is a good and preferred choice for the prediction of ionospheric scintillation events at the equatorial anomaly. With these results, we recommend the use of ensemble learning techniques for the study of the ionospheric scintillation phenomenon.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Responses of the Indian Equatorial Ionization Anomaly to two CME-induced geomagnetic storms during the peak phase of solar cycle 24
    Simi, K. G.
    Akala, A. O.
    Krishna, K. Siva
    Amaechi, Paul O.
    Ogwala, Aghogho
    Ratnam, D. Venkata
    Oyedokun, O. J.
    ADVANCES IN SPACE RESEARCH, 2021, 68 (08) : 3417 - 3434
  • [42] Equatorial ionospheric response to isolated auroral substorms over a solar cycle (1980-85): Evidence of longitudinal anomaly
    Hajkowicz, LA
    ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1996, 14 (09): : 906 - 916
  • [43] Equatorial ionospheric response to isolated auroral substorms over a solar cycle (1980-85): evidence of longitudinal anomaly
    Hajkowicz, L. A.
    Annales Geophysicae, 14 (09):
  • [44] Monthly trends in temporal and spatial distribution of Ionospheric Irregularities across the African region during the descending phase of solar cycle 24
    Olwendo, J.
    Cilliers, P. J.
    Ming, O.
    ADVANCES IN SPACE RESEARCH, 2021, 67 (10) : 3187 - 3201
  • [45] Prediction of hypercholesterolemia using machine learning techniques
    Pooyan Moradifar
    Mohammad Meskarpour Amiri
    Journal of Diabetes & Metabolic Disorders, 2023, 22 : 255 - 265
  • [46] Bankruptcy Prediction Using Machine Learning Techniques
    Shetty, Shekar
    Musa, Mohamed
    Bredart, Xavier
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2022, 15 (01)
  • [47] Emotion Prediction using Machine Learning Techniques
    Shamsi, Areeba
    Nasir, Sabika
    Hajiani, Mishaal Amin
    Ejaz, Afshan
    Ali, Syed Asim
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (06): : 166 - 172
  • [48] Diabetes Prediction using Machine Learning Techniques
    Obulesu, O.
    Suresh, K.
    Ramudu, B. Venkata
    HELIX, 2020, 10 (02): : 136 - 142
  • [49] Prediction of hypercholesterolemia using machine learning techniques
    Moradifar, Pooyan
    Amiri, Mohammad Meskarpour
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2023, 22 (01) : 255 - 265
  • [50] Assessing ionospheric response during some strong storms in solar cycle 24 using various data sources
    Habarulema, John Bosco
    Katamzi, Zama Thobeka
    Sibanda, Patrick
    Matamba, Tshimangadzo Merline
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (01) : 1064 - 1082