Mobile Network Configuration Recommendation Using Deep Generative Graph Neural Network

被引:0
|
作者
Piroti, Shirwan [1 ]
Chawla, Ashima [1 ]
Zanouda, Tahar [1 ]
机构
[1] Ericsson, Stockholm,164 83, Sweden
来源
IEEE Networking Letters | 2024年 / 6卷 / 03期
关键词
Computer architecture - Deep learning - Domain Knowledge - Graph neural networks - Network architecture;
D O I
10.1109/LNET.2024.3422482
中图分类号
学科分类号
摘要
There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift. © 2019 IEEE.
引用
收藏
页码:179 / 182
相关论文
共 50 条
  • [41] Research Advances on Graph Neural Network Recommendation of Knowledge Graph Enhancement
    Wu, Guodong
    Wang, Xueni
    Liu, Yuliang
    Computer Engineering and Applications, 2024, 59 (04) : 18 - 29
  • [42] Hybrid microblog recommendation with heterogeneous features using deep neural network
    Gao, Jiameng
    Zhang, Chunxia
    Xu, Yanyan
    Luo, Meiqiu
    Niu, Zhendong
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 167
  • [43] Memory-based Attention Graph Neural Network for Network Expert Recommendation
    Chen Z.
    Zhu M.
    Du J.
    Yuan X.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2022, 49 (06): : 116 - 123
  • [44] Predicting Traffic Path Recommendation Using Spatiotemporal Graph Convolutional Neural Network
    Khairnar, Hitendra Shankarrao
    Sonkamble, Balwant
    PROCEEDINGS OF SIXTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICICT 2021), VOL 2, 2022, 236 : 413 - 421
  • [45] GELibRec: Third-Party Libraries Recommendation Using Graph Neural Network
    Zou, Chengming
    Fan, Zhenfeng
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 332 - 340
  • [46] Deep Neural Network for Localization of Mobile Users using Raytracing
    Kaur, Jaspreet
    Popoola, Olaoluwa R.
    Imran, Muhammed Ali
    Abbasi, Qammer H.
    Abbas, Hasan T.
    2022 IEEE USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2022, : 76 - 77
  • [47] A Deep Neural Network Model for Stock Investment Recommendation by Considering the Stock Market as a Time Graph
    Keskin, Mustafa Mert
    Yilmaz, Muhammed
    Ozbayoglu, Ahmet Murat
    2ND INTERNATIONAL INFORMATICS AND SOFTWARE ENGINEERING CONFERENCE (IISEC), 2021,
  • [48] Sparse Deep Neural Network Graph Challenge
    Kepner, Jeremy
    Alford, Simon
    Gadepally, Vijay
    Jones, Michael
    Milechin, Lauren
    Robinett, Ryan
    Samsi, Sid
    2019 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2019,
  • [49] Deep neural network representation and Generative Adversarial Learning
    Ruiz-Garcia, Ariel
    Schmidhuber, Jurgen
    Palade, Vasile
    Took, Clive Cheong
    Mandic, Danilo
    NEURAL NETWORKS, 2021, 139 : 199 - 200
  • [50] Tomato plant leaf disease detection using generative adversarial network and deep convolutional neural network
    Deshpande, Rashmi
    Patidar, Hemant
    IMAGING SCIENCE JOURNAL, 2022, 70 (01): : 1 - 9