Estimating local false discovery rates to identify the differentially expressed genes in microarrays

被引:0
|
作者
机构
[1] Qi, Yunsong
[2] Jin, Ling
[3] Wang, Lirong
来源
Qi, Y. (qys@ujs.edu.cn) | 1600年 / Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States卷 / 08期
关键词
Differentially expressed gene - False discovery rate - Local false discovery rates - Microarray data - Microarray experiments - Multiple hypothesis testing - Multiple testing - Null hypothesis - P-values - Statistical concepts;
D O I
暂无
中图分类号
学科分类号
摘要
To detect differentially expressed genes (DEGs) in microarray experiments thousands of genes are tested against a null hypothesis. The false discovery rate (FDR) is a statistical concept for quantifying uncertainty during multiple testing. In this paper, a Hidden Markov Model (HMM) based approach is proposed to identify DEGs using local false discovery rates (Lfdr). We estimate the p-values and the proportion of the true null hypothesis using HMM, calculating the Lfdr. We assess the proposed method using four FDR-controlling procedure based methods. In terms of multiple hypothesis testing power, we demonstrate that our proposed method is more suitable to identify DEGs in microarrays. We also show the validity of the proposed method by applying it to a real microarray data set. © 2012 Binary Information Press.
引用
收藏
相关论文
共 50 条
  • [41] The t-mixture model approach for detecting differentially expressed genes in microarrays
    Shuo Jiao
    Shunpu Zhang
    Functional & Integrative Genomics, 2008, 8 : 181 - 186
  • [42] Identification of differentially expressed genes in human salivary gland tumors by DNA microarrays
    Francioso, F
    Carinci, F
    Tosi, L
    Scapoli, L
    Pezzetti, F
    Passerella, E
    Evangelisti, R
    Pastore, A
    Pelucchi, S
    Piattelli, A
    Rubini, C
    Fioroni, M
    Carinci, P
    Volinia, S
    MOLECULAR CANCER THERAPEUTICS, 2002, 1 (07) : 533 - 538
  • [43] Intensity dependent estimation of noise in microarrays improves detection of differentially expressed genes
    Zeisel, Amit
    Amir, Amnon
    Koestler, Wolfgang J.
    Domany, Eytan
    BMC BIOINFORMATICS, 2010, 11
  • [44] Detection of differentially expressed genes in healing mouse corneas, using cDNA microarrays
    Cao, ZY
    Wu, HK
    Bruce, A
    Wollenberg, K
    Panjwani, N
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2002, 43 (09) : 2897 - 2904
  • [45] Investigation of reproducibility of differentially expressed genes in DNA microarrays through statistical simulation
    Xiaohui Fan
    Leming Shi
    Hong Fang
    Stephen Harris
    Roger Perkins
    Weida Tong
    BMC Proceedings, 3 (Suppl 2)
  • [46] Intensity dependent estimation of noise in microarrays improves detection of differentially expressed genes
    Amit Zeisel
    Amnon Amir
    Wolfgang J Köstler
    Eytan Domany
    BMC Bioinformatics, 11
  • [47] Empirically determined false discovery rates for differentially expressed genes, benchmark dose modeling, transcriptomic biomarker activation, and pathway analysis in four human cell lines
    Meier, Matthew J.
    Rowan-Carroll, Andrea
    Williams, Andrew
    Reardon, Anthony J. F.
    Long, Alexandra S.
    Cho, Eunnara
    Rigden, Marc
    Addicks, Gregory
    Atlas, Ella
    Yauk, Carole
    Barton-Maclaren, Tara
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2023, 64 : 45 - 46
  • [48] A direct approach to estimating false discovery rates conditional on covariates
    Boca, Simina M.
    Leek, Jeffrey T.
    PEERJ, 2018, 6
  • [49] fdrtool: a versatile R package for estimating local and tail area-based false discovery rates
    Strimmer, Korbinian
    BIOINFORMATICS, 2008, 24 (12) : 1461 - 1462
  • [50] A relational database to identify differentially expressed genes in the endometrium and endometriosis lesions
    Michael Gabriel
    Vidal Fey
    Taija Heinosalo
    Prem Adhikari
    Kalle Rytkönen
    Tuomo Komulainen
    Kaisa Huhtinen
    Teemu Daniel Laajala
    Harri Siitari
    Arho Virkki
    Pia Suvitie
    Harry Kujari
    Tero Aittokallio
    Antti Perheentupa
    Matti Poutanen
    Scientific Data, 7