TS-ECG: A Deep Learning Approach for Classification Paroxysmal Atrial Fibrillation During Normal Sinus Rhythm

被引:0
|
作者
Kim, Myoungsoo [1 ,2 ]
Baek, Yong-Soo [2 ,3 ,4 ,5 ]
Lee, Sang-Chul [1 ,2 ]
Kim, Dae-Hyeok [2 ,4 ,5 ]
Kwon, Soonil [6 ]
Lee, So-Ryung [6 ]
Choi, Eue-Keun [6 ]
Yong Shin, Seung [7 ,8 ]
Choi, Wonik [1 ,2 ]
机构
[1] Department of Electrical and Computer Engineering, Inha University, Incheon,22212, Korea, Republic of
[2] DeepCardio Company Ltd., Yeonsu-gu, Incheon,21984, Korea, Republic of
[3] School of Computer Science, University of Birmingham, Birmingham,B15 2TT, United Kingdom
[4] Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine, Junggu, Incheon,22332, Korea, Republic of
[5] Inha University Hospital, Junggu, Incheon,22332, Korea, Republic of
[6] Department of Cardiology, Seoul National University Hospital, Seoul,03080, Korea, Republic of
[7] Korea University Ansan Hospital, Korea University, Seoul,02841, Korea, Republic of
[8] Graduate School of Convergence and Innovation in Technology and Engineering (CITE), POSTECH, Pohang,37673, Korea, Republic of
关键词
D O I
10.1109/ACCESS.2024.3502629
中图分类号
学科分类号
摘要
37
引用
下载
收藏
页码:186035 / 186046
相关论文
共 50 条
  • [31] Deep Learning of Electrocardiograms in Sinus Rhythm From US Veterans to Predict Atrial Fibrillation
    Yuan, Neal
    Duffy, Grant
    Dhruva, Sanket S.
    Oesterle, Adam
    Pellegrini, Cara N.
    Theurer, John
    Vali, Marzieh
    Heidenreich, Paul A.
    Keyhani, Salomeh
    Ouyang, David
    JAMA CARDIOLOGY, 2023, 8 (12) : 1131 - 1139
  • [32] A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm
    Yong-Soo Baek
    Sang-Chul Lee
    Wonik Choi
    Dae-Hyeok Kim
    Scientific Reports, 11
  • [33] Detecting paroxysmal atrial fibrillation from normal sinus rhythm in equine athletes using Symmetric Projection Attractor Reconstruction and machine learning
    Huang, Ying H.
    Lyle, Jane V.
    Ab Razak, Anisa Shahira
    Nandi, Manasi
    Marr, Celia M.
    Huang, Christopher L. -H.
    Aston, Philip J.
    Jeevaratnam, Kamalan
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2022, 3 (02): : 96 - 106
  • [34] A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm
    Baek, Yong-Soo
    Lee, Sang-Chul
    Choi, Wonik
    Kim, Dae-Hyeok
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [35] Screening Tool for Paroxysmal Atrial Fibrillation Based on a Deep-Learning Algorithm Using Printed 12-Lead Electrocardiographic Records during Sinus Rhythm
    Zhou, Yang
    Zhang, Deyun
    Chen, Yu
    Geng, Shijia
    Wei, Guodong
    Tian, Ying
    Shi, Liang
    Wang, Yanjiang
    Hong, Shenda
    Liu, Xingpeng
    REVIEWS IN CARDIOVASCULAR MEDICINE, 2024, 25 (07)
  • [36] Detection of Paroxysmal Atrial Fibrillation from Dynamic ECG Recordings Based on a Deep Learning Model
    Hu, Yating
    Feng, Tengfei
    Wang, Miao
    Liu, Chengyu
    Tang, Hong
    JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (05):
  • [37] Deep Convolutional Neural Networks and Learning ECG Features for Screening Paroxysmal Atrial Fibrillation Patients
    Pourbabaee, Bahareh
    Roshtkhari, Mehrsan Javan
    Khorasani, Khashayar
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (12): : 2095 - 2104
  • [38] Changes in sinus rhythm heart rate preceding episodes of paroxysmal atrial fibrillation
    Hnatkova, K
    Murgatroyd, FD
    Alferness, C
    Camm, JA
    Malik, M
    CIRCULATION, 1996, 94 (08) : 402 - 402
  • [39] Automated Differentiation between Normal Sinus Rhythm, Atrial Tachycardia, Atrial Flutter and Atrial Fibrillation during Electrophysiology
    Razzaq, Nauman
    Sheikh, Shafa-at Ali
    Zaidi, Tahir
    Akhtar, Imran
    Ahmed, Syed Hassaan
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2017, : 266 - 272
  • [40] The quest for indicators of paroxysmal atrial fibrillation in sinus rhythm - the DETECT AF trial
    Brasier, N.
    Engelter, S.
    Kolbitsch, T.
    Tabord, A.
    Knobeloch, J.
    Kuhne, M.
    Conen, D.
    Traenka, C.
    Kreutzberger, T.
    Vollmin, G.
    Eckstein, J.
    ACTA CARDIOLOGICA, 2019, 74 (04) : 301 - 307