Deep Learning-Based Ensembling Technique to Classify Alzheimer's Disease Stages Using Functional MRI

被引:2
|
作者
Tajammal T. [1 ]
Khurshid S.K. [1 ]
Jaleel A. [2 ]
Qayyum Wahla S. [1 ]
Ziar R.A. [3 ]
机构
[1] Department of Computer Science, University of Engineering and Technology, Lahore
[2] Department of Computer Science (RCET GRW), University of Engineering and Technology, Lahore
[3] Department of Computer Science, Kardan University, Kabul
关键词
All Open Access; Hybrid Gold; Green;
D O I
10.1155/2023/6961346
中图分类号
学科分类号
摘要
The major issue faced by elderly people in society is the loss of memory, difficulty learning new things, and poor judgment. This is due to damage to brain tissues, which may lead to cognitive impairment and eventually Alzheimer's. Therefore, the detection of such mild cognitive impairment (MCI) becomes important. Usually, this is detected when it is converted into Alzheimer's disease (AD). AD is irreversible and cannot be cured whereas mild cognitive impairment (MCI) can be cured. The goal of this research is to diagnose Alzheimer's patients for timely treatment. For this purpose, functional MRI images from the publicly available dataset are used. Various deep-learning models have been used by the scientific community for the automatic detection of Alzheimer's subjects. These include the binary classification of scans of patients into MCI and AD stages, and limited work is carried out for multiclass classification of Alzheimer's disease up to six different stages. This study is divided into two steps. In the first step, a binary classification of the subject's scan is performed using Custom CNN. The second step involves the use of different deep learning models along with Custom CNN for multiclass classification of a subject's scan into one of the six stages of Alzheimer's disease. The models are evaluated based on different evaluation metrics, and the overall result of the models is improved using the max-voting ensembling technique. The experimental results show that an overall average accuracy of 98.8% is achieved for Alzheimer's stages classification. © 2023 Taliah Tajammal et al.
引用
收藏
相关论文
共 50 条
  • [21] Deep Learning Based Model for Alzheimer's Disease Detection Using Brain MRI Images
    Mamun, Muntasir
    Bin Shawkat, Siam
    Ahammed, Md Salim
    Uddin, Md Milon
    Mahmud, Md Ishtyaq
    Islam, Asm Mohaimenul
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 510 - 516
  • [22] Deep-Learning Based Classification of Alzheimer's Disease Using Resting-State Functional MRI Time Series
    Yang, Z.
    Zhang, E.
    Yu, S.
    Wardak, Z.
    Chen, M.
    Lu, W.
    Gu, X.
    MEDICAL PHYSICS, 2019, 46 (06) : E160 - E160
  • [23] Deep learning-based polygenic risk analysis for Alzheimer's disease prediction
    Zhou, Xiaopu
    Chen, Yu
    Ip, Fanny C. F.
    Jiang, Yuanbing
    Cao, Han
    Lv, Ge
    Zhong, Huan
    Chen, Jiahang
    Ye, Tao
    Chen, Yuewen
    Zhang, Yulin
    Ma, Shuangshuang
    Lo, Ronnie M. N.
    Tong, Estella P. S.
    Mok, Vincent C. T.
    Kwok, Timothy C. Y.
    Guo, Qihao
    Mok, Kin Y.
    Shoai, Maryam
    Hardy, John
    Chen, Lei
    Fu, Amy K. Y.
    Ip, Nancy Y.
    COMMUNICATIONS MEDICINE, 2023, 3 (01):
  • [24] Deep Learning-based Feature Extraction in Neuroimaging Genetics for Alzheimer's Disease
    Chakraborty, Dipnil
    Zhuang, Zhong
    Xue, Haoran
    Pan, Wei
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 747 - 747
  • [25] Deep learning-based polygenic risk analysis for Alzheimer’s disease prediction
    Xiaopu Zhou
    Yu Chen
    Fanny C. F. Ip
    Yuanbing Jiang
    Han Cao
    Ge Lv
    Huan Zhong
    Jiahang Chen
    Tao Ye
    Yuewen Chen
    Yulin Zhang
    Shuangshuang Ma
    Ronnie M. N. Lo
    Estella P. S. Tong
    Vincent C. T. Mok
    Timothy C. Y. Kwok
    Qihao Guo
    Kin Y. Mok
    Maryam Shoai
    John Hardy
    Lei Chen
    Amy K. Y. Fu
    Nancy Y. Ip
    Communications Medicine, 3
  • [26] Deep Learning-based software application for assisting people with Alzheimer's disease
    Bejan, Catalina
    Munteanu, Dan
    Munteanu, Nicoleta
    2022 26TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2022, : 263 - 270
  • [27] Deep Learning Based Neural Network for Six-Class-Classification of Alzheimer's Disease Stages Based on MRI Images
    Roerup, Tim
    Rojas, I
    Pomares, H.
    Gloesekoetter, P.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 15 - 23
  • [28] Prediction Alzheimer's disease from MRI images using deep learning
    Mggdadi, Esraa
    Al-Aiad, Ahmad
    Al-Ayyad, Muhammad Saleh
    Darabseh, Alaa
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 120 - 125
  • [29] Alzheimer's Disease MRI Classification using EfficientNet: A Deep Learning Model
    Aborokbah, Majed
    2024 4TH INTERNATIONAL CONFERENCE ON APPLIED ARTIFICIAL INTELLIGENCE, ICAPAI, 2024, : 8 - 15
  • [30] A deep learning based CNN approach on MRI for Alzheimer's disease detection
    Roy, Sanjiban Sekhar
    Sikaria, Raghav
    Susan, Aarti
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2019, 13 (04): : 495 - 505