Innovative Diversity Metrics in Hierarchical Population-Based Differential Evolution for PEM Fuel Cell Parameter Optimization

被引:1
|
作者
Khishe, Mohammad [1 ,2 ,3 ]
Jangir, Pradeep [4 ,5 ,6 ]
Arpita [7 ]
Agrawal, Sunilkumar P. [8 ]
Pandya, Sundaram B. [9 ]
Parmar, Anil [9 ]
Abualigah, Laith [10 ]
机构
[1] Imam Khomeini Naval Sci Univ Nowshahr, Dept Elect Engn, Nowshahr, Iran
[2] Yuan Ze Univ, Innovat Ctr Artificial Intelligence Applicat, Taoyuan, Taiwan
[3] Jadara Univ, Res Ctr, Irbid, Jordan
[4] Chandigarh Univ, Univ Ctr Res & Dev, Mohali, India
[5] Graph Era Hill Univ, Graph Era Deemed Univ, Dept CSE, Dehra Dun 248001, Uttarakhand, India
[6] Appl Sci Private Univ, Appl Sci Res Ctr, Amman, Jordan
[7] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Biosci, Chennai, Tamil Nadu, India
[8] Govt Engn Coll, Dept Elect Engn, Gandhinagar, Gujarat, India
[9] Shri KJ Polytech, Dept Elect Engn, Bharuch, India
[10] Al Al Bayt Univ, Comp Sci Dept, Mafraq, Jordan
关键词
differential evolution; HPDE; parameter estimation; PEMFC; proton exchange membrane fuel cell; STEADY-STATE; ALGORITHM; MODEL; IDENTIFICATION;
D O I
10.1002/eng2.13065
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The optimization of parameters in proton exchange membrane fuel cell (PEMFC) models is essential for enhancing the design and control of fuel cells and is currently a vibrant area of research. This involves a complex, nonlinear, and multivariable numerical optimization challenge. Recently, various metaheuristic approaches have been applied to efficiently identify optimal configurations for PEMFC models, capable of exploring a broad search space to locate ideal solutions promptly. In this study, the recently developed hierarchical population-based differential evolution (HPDE) was employed for parameter optimization of PEMFCs due to its robustness and demonstrated superiority over other optimization algorithms. This research tested the proposed optimization algorithm by identifying parameters for 12 distinct PEMFCs, including BCS 500 W PEMFC, Nedstack 600 W PS6 PEMFC, SR-12500 W PEMFC, H-12 PEMFC, STD 250 W PEMFC, and HORIZON 500 W PEMFC, four variants of 250 W PEMFC, and two variants of H-12 12 W PEMFC. The performance of HPDE was also benchmarked against other advanced evolutionary algorithms (EAs), such as E-QUATRE, iLSHADE, CRADE, L-SHADE, jSO, HARD-DE, LSHADE-cnEpSin, DE, and PCM-DE. Despite its simplicity, the results reveal that HPDE can precisely and swiftly extract the parameters of PEMFC models. Furthermore, the voltage-current (V-I), power-current (P-I), and error characteristics derived from the HPDE algorithm consistently align with both simulated and experimental data across all seven models of PEMFCs. Additionally, HPDE has shown to outperform various versions of DE algorithms, providing superior results.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] PEM fuel cells model parameter identification based on a new improved fluid search optimization algorithm
    Cao, Yan
    Kou, Xiaoxi
    Wu, Yujia
    Jermsittiparsert, Kittisak
    Yildizbasi, Abdullah
    ENERGY REPORTS, 2020, 6 : 813 - 823
  • [42] Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer
    Rezk, Hegazy
    Ferahtia, Seydali
    Djeroui, Ali
    Chouder, Aissa
    Houari, Azeddine
    Machmoum, Mohamed
    Abdelkareem, Mohammad Ali
    ENERGY, 2022, 239
  • [43] PEM fuel cell model parameters extraction based on moth-flame optimization
    Ben Messaoud, Ramzi
    Midouni, Adnene
    Hajji, Salah
    CHEMICAL ENGINEERING SCIENCE, 2021, 229
  • [44] Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm
    Xu B.
    Huagong Xuebao/CIESC Journal, 2021, 72 (03): : 1512 - 1520
  • [45] Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution
    Gong, Wenyin
    Cai, Zhihua
    ENERGY, 2013, 59 : 356 - 364
  • [46] Control Algorithm Based on an Experimental Approach for PEM Fuel Cell Systems Efficiency Optimization
    Adegnon, K. M.
    Agbossou, K.
    Dube, Y.
    Doumbia, M.
    Kelouwani, S.
    2013 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2013, : 679 - 683
  • [47] Hierarchical multi-objective optimization of proton exchange membrane fuel cell with parameter uncertainty
    Wang, Yunlong
    Ye, Cunliang
    Wang, Yongfu
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 86
  • [48] Parameter configuration using differential evolution for proton exchange membrane fuel cell system
    Li, Xin
    Qin, Jin
    Yu, Datai
    Journal of Computational Information Systems, 2011, 7 (03): : 770 - 777
  • [49] Adaptive Differential Evolution with Coordinated Crossover and Diversity-based Population
    Zhang, Chunmei
    Zhao, Zhicheng
    Yang, Tiemei
    Fan, Bingyao
    2016 12TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2016, : 947 - 950
  • [50] Differential Evolution with multi-stage parameter adaptation and diversity enhancement mechanism for numerical optimization
    Xu, Qiutong
    Meng, Zhenyu
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 92