Predicting Student Employability Through the Internship Context Using Gradient Boosting Models

被引:0
|
作者
Saidani, Oumaima [1 ]
Menzli, Leila Jamel [1 ]
Ksibi, Amel [1 ]
Alturki, Nazik [1 ]
Alluhaidan, Ala Saleh [1 ]
机构
[1] Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh,11671, Saudi Arabia
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:46472 / 46489
相关论文
共 50 条
  • [11] 'Employability in context': The importance of considering contextual factors in reimagining employability through Australian student mobility to the Indo-Pacific region
    Thi Tran, Ly
    Thi Quy Do, Thu
    Bui, Huyen
    HIGHER EDUCATION QUARTERLY, 2021, 75 (04) : 591 - 607
  • [12] Assessing the Performance of Gradient-Boosting Models for Predicting the Travel Mode Choice Using Household Survey Data
    Pineda-Jaramillo, Juan
    Arbelaez-Arenas, Oscar
    JOURNAL OF URBAN PLANNING AND DEVELOPMENT, 2022, 148 (02)
  • [13] Predicting Zillow Estimation Error Using Linear Regression and Gradient Boosting
    Sangani, Darshan
    Erickson, Kelby
    Al Hasan, Mohammad
    2017 IEEE 14TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SENSOR SYSTEMS (MASS), 2017, : 530 - 534
  • [14] Predicting the climate impact of healthcare facilities using gradient boosting machines
    Yin, Hao
    Sharma, Bhavna
    Hu, Howard
    Liu, Fei
    Kaur, Mehak
    Cohen, Gary
    Mcconnell, Rob
    Eckel, Sandrah P.
    CLEANER ENVIRONMENTAL SYSTEMS, 2024, 12
  • [15] Legal Judgment Prediction in the Context of Energy Market using Gradient Boosting
    Franca, Joao V. F.
    Boaro, Jose M. C.
    dos Santos, Pedro T. C.
    Henrique, Fernando
    Garcia, Venicius
    Manfredini, Caio
    Junior, Domingos A. D.
    de Oliveira, Francisco Y. C.
    Castro, Carlos E. P.
    Braz Junior, Geraldo
    Silva, Aristofanes C.
    Paiva, Anselmo C.
    de Oliveira, Milton S. L.
    Moreira e Moraes, Renato U.
    Alves, Erika W. B. A. L.
    Sobral Neto, Jose S.
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 875 - 880
  • [16] Predicting Water Levels Using Gradient Boosting Regressor and LSTM Models: A Case Study of Lago de Chapala Dam
    Dassaef Lopez-Barrios, Jesus
    Karena de Anda-Garcia, Ilse
    Jimenez-Cruz, Raul
    Trejo, Luis A.
    Ochoa-Ruiz, Gilberto
    Gonzalez-Mendoza, Miguel
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT 1, MICAI 2024, 2025, 15246 : 101 - 120
  • [17] Gradient Boosting Optimized Through Differential Evolution for Predicting the Testing Effort of Software Projects
    Sanchez-Garcia, Angel J.
    Lopez-Martin, Cuauhtemoc
    Abran, Alain
    IEEE ACCESS, 2023, 11 : 135235 - 135254
  • [18] Predicting Financial Well-Being Using Observable Features and Gradient Boosting
    Madakkatel, Iqbal
    Chiera, Belinda
    McDonnell, Mark D.
    AI 2019: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11919 : 228 - 239
  • [19] Assessing fracture risk using gradient boosting machine (GBM) models
    Atkinson, Elizabeth J.
    Therneau, Terry M.
    Melton, L. Joseph, III
    Camp, Jon J.
    Achenbach, Sara J.
    Amin, Shreyasee
    Khosla, Sundeep
    JOURNAL OF BONE AND MINERAL RESEARCH, 2012, 27 (06) : 1397 - 1404
  • [20] Prediction of compressive strength of recycled concrete using gradient boosting models
    Ahmed, Amira Hamdy Ali
    Jin, Wu
    Ali, Mosaad Ali Hussein
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (09)