Geometric constructions with discretized random variables

被引:3
|
作者
Institut für Technische Mathematik, Geometrie und Bauinformatik, Universität Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria [1 ]
不详 [2 ]
机构
来源
Reliab Comput | 2006年 / 3卷 / 203-223期
基金
奥地利科学基金会;
关键词
Algorithms - Computer science - Mathematical models - Problem solving - Random processes;
D O I
10.1007/s11155-006-7219-2
中图分类号
学科分类号
摘要
We generalize the DEnv (Distribution envelope determination) method for bounding the result of arithmetic operations on random variables with unknown dependence to higher-dimensional settings. In order to minimize both the influence of the coordinate frame and information loss we suggest a nested thicket representation for random variables and a corresponding intersection algorithm. © Springer 2006.
引用
收藏
相关论文
共 50 条
  • [31] Exact learning of discretized geometric concepts
    Department of Computer Science, University of Calgary, Calgary, Alta. T2N 1N4, Canada
    SIAM J Comput, 2 (674-699):
  • [32] Exact learning of discretized geometric concepts
    Bshouty, NH
    Goldberg, PW
    Goldman, SA
    Mathias, HD
    SIAM JOURNAL ON COMPUTING, 1998, 28 (02) : 674 - 699
  • [33] SIMPLE CONSTRUCTIONS OF ALMOST K-WISE INDEPENDENT RANDOM-VARIABLES
    ALON, N
    GOLDREICH, O
    HASTAD, J
    PERALTA, R
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) : 289 - 304
  • [34] Geometric Constructions with Ellipses
    Aliska Gibbins
    Lawrence Smolinsky
    The Mathematical Intelligencer, 2009, 31
  • [35] Geometric constructions on cycles
    Zlobec, BJ
    Kosta, NM
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) : 1565 - 1585
  • [36] Geometric Constructions with Ellipses
    Gibbins, Aliska
    Smolinsky, Lawrence
    MATHEMATICAL INTELLIGENCER, 2009, 31 (01): : 57 - 62
  • [37] Geometric Unity Constructions
    Wronecki, James A.
    2013 ASEE ANNUAL CONFERENCE, 2013,
  • [38] Algorithms and Geometric Constructions
    Uspenskiy, Vladimir
    Shen, Alexander
    SAILING ROUTES IN THE WORLD OF COMPUTATION, 2018, 10936 : 410 - 420
  • [39] Axiomatizing geometric constructions
    Department of Integrative Studies, Arizona State University, West Campus, PO Box 37100, Phoenix, AZ 85069-7100, United States
    J. Appl. Logic, 2008, 1 (24-46):
  • [40] On upper bounds for the tail distribution of geometric sums of subexponential random variables
    Richards, Andrew
    QUEUEING SYSTEMS, 2009, 62 (03) : 229 - 242