A novel multi-label classification deep learning method for hybrid fault diagnosis in complex industrial processes

被引:0
|
作者
机构
[1] Zhou, Kun
[2] Tong, Yifan
[3] Wei, Xiaoran
[4] 1,Song, Kai
[5] 1,Chen, Xu
来源
关键词
D O I
10.1016/j.measurement.2024.115804
中图分类号
学科分类号
摘要
Hybrid Fault Detection and Diagnosis, encompassing both individual and simultaneous faults, is an important solution needed in chemical process safety practice. We systematically examine the two perspectives of simultaneous faults in previous studies: multi-class and multi-label classification, and highlight the limitations of the former while demonstrating the efficacy of the latter. Then, a novel multi-label classification Hybrid Fault Transformer (mcHFT) model was put forward to address hybrid faults. Our model is capable of learning not only intrinsic features of individual faults but also their coupled relationships. Importantly, this work constitutes the first comprehensive evaluation of Hybrid FDD on the Tennessee Eastman (TE) process to our knowledge. The mcHFT model significantly enhances key performance indicators over existing models and introduces an adaptive strategy to reduce false positives. The dataset developed for this research is made available under an MIT license, contributing a valuable resource for future exploration in this field. © 2024
引用
收藏
相关论文
共 50 条
  • [31] MLCE: A Multi-Label Crotch Ensemble Method for Multi-Label Classification
    Yao, Yuan
    Li, Yan
    Ye, Yunming
    Li, Xutao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [32] Simultaneous fault diagnosis for aircraft engine using multi-label learning
    Li, Bing
    Zhao, Yong-Ping
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2022, 236 (07) : 1355 - 1371
  • [33] On active learning in multi-label classification
    Brinker, K
    FROM DATA AND INFORMATION ANALYSIS TO KNOWLEDGE ENGINEERING, 2006, : 206 - 213
  • [34] Compact learning for multi-label classification
    Lv, Jiaqi
    Wu, Tianran
    Peng, Chenglun
    Liu, Yunpeng
    Xu, Ning
    Geng, Xin
    PATTERN RECOGNITION, 2021, 113
  • [35] Metric Learning for Multi-label Classification
    Brighi, Marco
    Franco, Annalisa
    Maio, Dario
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2020, 2021, 12644 : 24 - 33
  • [36] Hyperspherical Learning in Multi-Label Classification
    Ke, Bo
    Zhu, Yunquan
    Li, Mengtian
    Shu, Xiujun
    Qiao, Ruizhi
    Ren, Bo
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 38 - 55
  • [37] Learning multi-label scene classification
    Boutell, MR
    Luo, JB
    Shen, XP
    Brown, CM
    PATTERN RECOGNITION, 2004, 37 (09) : 1757 - 1771
  • [38] Simultaneous Fault Diagnosis Based on Hierarchical Multi-Label Classification and Sparse Bayesian Extreme Learning Machine
    Ye, Qing
    Liu, Changhua
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [39] Multi-Label Classification Method Based on Extreme Learning Machines
    Venkatesan, Rajasekar
    Er, Meng Joo
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 619 - 624
  • [40] Machine learning explanability method for the multi-label classification model
    Singla, Kushal
    Biswas, Subham
    2021 IEEE 15TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2021), 2021, : 337 - 340