Gradient-enhanced deep Gaussian processes for multifidelity modeling

被引:0
|
作者
Bone, Viv [1 ]
van der Heide, Chris [1 ]
Mackle, Kieran [1 ]
Jahn, Ingo [1 ]
Dower, Peter M. [1 ]
Manzie, Chris [1 ]
机构
[1] The University of Melbourne, Parkville, Melbourne,3010, Australia
关键词
Gaussian distribution - Gaussian noise (electronic);
D O I
10.1016/j.jcp.2024.113474
中图分类号
学科分类号
摘要
Multifidelity models integrate data from multiple sources to produce a single approximator for the underlying process. Dense low-fidelity samples are used to reduce interpolation error, while sparse high-fidelity samples are used to compensate for bias or noise in the low-fidelity samples. Deep Gaussian processes (GPs) are attractive for multifidelity modeling as they are non-parametric, robust to overfitting, perform well for small datasets, and, critically, can capture nonlinear and input-dependent relationships between data of different fidelities. Many datasets naturally contain gradient data, most commonly when they are generated by computational models that have adjoint solutions or are built in automatic differentiation frameworks. Principally, this work extends deep GPs to incorporate gradient data. We demonstrate this method on an analytical test problem and two realistic aerospace problems: one focusing on a hypersonic waverider with an inviscid gas dynamics truth model and another focusing on the canonical ONERA M6 wing with a viscous Reynolds-averaged Navier-Stokes truth model. In both examples, the gradient-enhanced deep GP outperforms a gradient-enhanced linear GP model and their non-gradient-enhanced counterparts. © 2024
引用
下载
收藏
相关论文
共 50 条
  • [31] On configurational forces for gradient-enhanced inelasticity
    Dimosthenis Floros
    Fredrik Larsson
    Kenneth Runesson
    Computational Mechanics, 2018, 61 : 409 - 432
  • [32] Gradient-enhanced softening material models
    Poh, L. H.
    Swaddiwudhipong, S.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (11) : 2094 - 2121
  • [33] Gradient-Enhanced Softmax for Face Recognition
    Sun, Linjun
    Li, Weijun
    Ning, Xin
    Zhang, Liping
    Dong, Xiaoli
    He, Wei
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (05) : 1185 - 1189
  • [34] SELECTIVE GRADIENT-ENHANCED INVERSE EXPERIMENTS
    PARELLA, T
    SANCHEZFERRANDO, F
    VIRGILI, A
    JOURNAL OF MAGNETIC RESONANCE SERIES A, 1995, 112 (01) : 106 - 108
  • [35] Gradient-enhanced response surface building
    van Keulen, F
    Vervenne, K
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2004, 27 (05) : 337 - 351
  • [36] Gradient-enhanced damage modeling of cracked bodies by reproducing kernel element method
    Zamani, Arash
    Eslami, M. Reza
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 213 : 266 - 288
  • [37] Accurate Modeling of Antenna Structures by Means of Domain Confinement and Gradient-Enhanced Kriging
    Pietrenko-Dabrowska, Anna
    Koziel, Slawomir
    Al-Hasan, Muath
    2021 15TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2021,
  • [38] Cost-Efficient Modeling of Antenna Structures Using Gradient-Enhanced Kriging
    Ulaganathan, Selvakumar
    Koziel, Slawomir
    Bekasiewicz, Adrian
    Couckuyt, Ivo
    Laermans, Eric
    Dhaene, Tom
    2015 LOUGHBOROUGH ANTENNAS & PROPAGATION CONFERENCE (LAPC), 2015,
  • [39] On the gradient-enhanced damage model for a hyperelastic material
    Karthik, S.
    Yamashita, T.
    Rajagopal, A.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2023,
  • [40] Gradient-Enhanced Universal Kriging for Uncertainty Propagation
    Lockwood, Brian A.
    Anitescu, Mihai
    NUCLEAR SCIENCE AND ENGINEERING, 2012, 170 (02) : 168 - 195