Point Clouds are Specialized Images: A Knowledge Transfer Approach for 3D Understanding

被引:0
|
作者
Kang, Jiachen [1 ]
Jia, Wenjing [1 ]
He, Xiangjian [2 ]
Lam, Kin Man [3 ]
机构
[1] Univ Technol Sydney, Sch Elect & Data Engn, Sydney, NSW 2007, Australia
[2] Univ Nottingham Ningbo, Sch Comp Sci, Ningbo 315100, Peoples R China
[3] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
Point cloud compression; Three-dimensional displays; Transformers; Task analysis; Data models; Image coding; Knowledge transfer; Cross-modal learning; point cloud understanding; self-supervision; transfer learning;
D O I
10.1109/TMM.2024.3412330
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Self-supervised representation learning (SSRL) has gained increasing attention in point cloud understanding, in addressing the challenges posed by 3D data scarcity and high annotation costs. This paper presents PCExpert, a novel SSRL approach that reinterprets point clouds as "specialized images". This conceptual shift allows PCExpert to leverage knowledge derived from large-scale image modality in a more direct and deeper manner, via extensively sharing the parameters with a pre-trained image encoder in a multi-way Transformer architecture. The parameter sharing strategy, combined with an additional pretext task for pre-training, i.e., transformation estimation, empowers PCExpert to outperform the state of the arts in a variety of tasks, with a remarkable reduction in the number of trainable parameters. Notably, PCExpert's performance under LINEAR fine-tuning (e.g., yielding a 90.02% overall accuracy on ScanObjectNN) has already closely approximated the results obtained with FULL model fine-tuning (92.66%), demonstrating its effective representation capability.
引用
收藏
页码:10755 / 10765
页数:11
相关论文
共 50 条
  • [41] A Hybrid Approach for Segmenting and Fitting Solid Primitives to 3D Point Clouds
    Friedrich, Markus
    Illium, Steffen
    Fayolle, Pierre-Alain
    Linnhoff-Popien, Claudia
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 1: GRAPP, 2020, : 38 - 48
  • [42] Deep Scene Flow Learning: From 2D Images to 3D Point Clouds
    Harbin Engineering University, School of Information and Communication Engineering, Heilongjiang, Harbin
    150001, China
    不详
    150001, China
    不详
    ON
    K1N 6N5, Canada
    IEEE Trans Pattern Anal Mach Intell, 2024, 1 (185-208):
  • [43] Persistent Point Feature Histograms for 3D Point Clouds
    Rusu, Radu Bogdan
    Marton, Zoltan Csaba
    Blodow, Nico
    Beetz, Michael
    IAS-10: INTELLIGENT AUTONOMOUS SYSTEMS 10, 2008, : 119 - 128
  • [44] MODELING THE DECAY IN AN HBIM STARTING FROM 3D POINT CLOUDS. A FOLLOWED APPROACH FOR CULTURAL HERITAGE KNOWLEDGE
    Chiabrando, F.
    Lo Turco, M.
    Rinaudo, F.
    ICOMOS/ISPRS INTERNATIONAL SCIENTIFIC COMMITTEE ON HERITAGE DOCUMENTATION (CIPA) 26TH INTERNATIONAL CIPA SYMPOSIUM - DIGITAL WORKFLOWS FOR HERITAGE CONSERVATION, 2017, 42-2 (W5): : 605 - 612
  • [45] Deep Scene Flow Learning: From 2D Images to 3D Point Clouds
    Xiang, Xuezhi
    Abdein, Rokia
    Li, Wei
    El Saddik, Abdulmotaleb
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (01) : 185 - 208
  • [46] An Integrated Model for Generating 3D Point Clouds and Segmentation from 2D Images
    Chen, Huan-Yu
    Lin, Chuen-Horng
    Lin, Yan-Yu
    Chan, Yung-Kuan
    2024 8TH INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATIONS, ICISPC 2024, 2024, : 94 - 101
  • [47] 3D skeleton transfer for meshes and clouds
    Seylan, Caglar
    Sahillioglu, Yusuf
    GRAPHICAL MODELS, 2019, 105
  • [48] BIM generation from 3D point clouds by combining 3D deep learning and improved morphological approach
    Tang, Shengjun
    Li, Xiaoming
    Zheng, Xianwei
    Wu, Bo
    Wang, Weixi
    Zhang, Yunjie
    AUTOMATION IN CONSTRUCTION, 2022, 141
  • [49] PROJECTIVE MULTITEXTURING OF CURRENT 3D CITY MODELS AND POINT CLOUDS WITH MANY HISTORICAL IMAGES
    de Castro, Maria Scarlleth Gomes
    Bredif, Mathieu
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION IV, 2022, 5-4 : 213 - 218
  • [50] Urban 3D segmentation and modelling from street view images and LiDAR point clouds
    Pouria Babahajiani
    Lixin Fan
    Joni-Kristian Kämäräinen
    Moncef Gabbouj
    Machine Vision and Applications, 2017, 28 : 679 - 694