Fault diagnosis of chemical industry process based on FRS and SVM

被引:0
|
作者
Wang, Xian-Fang [1 ,3 ]
Wang, Sui-Hua [1 ]
Du, Hao-Ze [2 ]
Wang, Ping [1 ]
机构
[1] School of Computer and Information Engineering, He'nan Normal University, Xinxiang,453007, China
[2] Collegeof Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing,210016, China
[3] College of Engineering, University of Missouri Columbia, MO,65211, United States
来源
Kongzhi yu Juece/Control and Decision | 2015年 / 30卷 / 02期
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.13195/j.kzyjc.2014.0246
中图分类号
学科分类号
摘要
Failure analysis - Rough set theory - Chemical industry - Fault detection
引用
收藏
页码:353 / 356
相关论文
共 50 条
  • [41] Chemical process fault diagnosis based on a combined deep learning method
    Bao, Yu
    Wang, Bo
    Guo, Pandeng
    Wang, Jingtao
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 100 (01): : 54 - 66
  • [42] A novel triage-based fault diagnosis method for chemical process
    Tao, Qucheng
    Xin, Bingru
    Zhang, Yifan
    Jin, Heping
    Li, Qian
    Dai, Zhongde
    Dai, Yiyang
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 183 : 1102 - 1116
  • [43] Roller Bearing Fault Diagnosis Based on Integrated Fault Feature and SVM
    Wang, Mengjiao
    Chen, Yangfan
    Zhang, Xinan
    Chau, Tat Kei
    Iu, Herbert Ho Ching
    Fernando, Tyrone
    Li, Zhijun
    Ma, Minglin
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2022, 10 (03) : 853 - 862
  • [44] Roller Bearing Fault Diagnosis Based on Integrated Fault Feature and SVM
    Mengjiao Wang
    Yangfan Chen
    Xinan Zhang
    Tat Kei Chau
    Herbert Ho Ching Iu
    Tyrone Fernando
    Zhijun Li
    Minglin Ma
    Journal of Vibration Engineering & Technologies, 2022, 10 : 853 - 862
  • [45] Study on fault diagnosis model and chemical process fault diagnosis based on improved KFDA and DE optimized SOM
    Li G.
    Zhang X.
    Cai S.
    Jia Y.
    Ning Z.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (04): : 1793 - 1801
  • [46] Gray fault diagnosis method based on LSA and SVM
    Hu Mingjie
    He Yuzhu
    Li Jianhong
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 108 - 112
  • [47] Network fault diagnosis based on Dual-SVM
    Wen, Xiang-Xi
    Meng, Xiang-Ru
    Ma, Zhi-Qiang
    Kongzhi yu Juece/Control and Decision, 2013, 28 (04): : 506 - 510
  • [48] Turbine Fault Diagnosis Based on Fuzzy Theory and SVM
    Xia, Fei
    Zhang, Hao
    Peng, Daogang
    Li, Hui
    Su, Yikang
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PROCEEDINGS, 2009, 5855 : 668 - +
  • [49] Node Fault Diagnosis in WSN Based on RS and SVM
    Yu, Cheng-bo
    Hu, Jing-jing
    Li, Rui
    Deng, Shun-hua
    Yang, Ru-min
    2014 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATION AND SENSOR NETWORK (WCSN), 2014, : 153 - 156
  • [50] Fault diagnosis of rolling bearings based on ISSA - SVM
    Li X.
    Jin W.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (06): : 106 - 114