An optimization principle for the computation of MHD equilibria in the solar corona

被引:0
|
作者
Wiegelmann, T. [1 ]
Neukirch, T. [2 ]
机构
[1] Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany
[2] School of Mathematics and Statistics, University of St. Andrews, St. Andrews, KY16 9SS, United Kingdom
来源
Astronomy and Astrophysics | 1600年 / 457卷 / 03期
关键词
Aims. We develop an optimization principle for computing stationary MHD equilibria. Methods. Our code for the self-consistent computation of the coronal magnetic fields and the coronal plasma uses non-force-free MHD equilibria. Previous versions of the code have been used to compute non-linear force-free coronal magnetic fields from photospheric measurements. The program uses photospheric vector magnetograms and coronal EUV images as input. We tested our reconstruction code with the help of a semi-analytic MHD-equilibrium. The quality of the reconstruction was judged by comparing the exact and reconstructed solution qualitatively by magnetic field-line plots and EUV-images and quantitatively by several different numerical criteria. Results. Our code is able to reconstruct the semi-analytic test equilibrium with high accuracy. The stationary MHD optimization code developed here has about the same accuracy as its predecessor; a non-linear force-free optimization code. The computing time for MHD-equilibria is; however; longer than for force-free magnetic fields. We also extended a well-known class of nonlinear force-free equilibria to the non-force-free regime for purposes of testing the code. Conclusions. We demonstrate that the code works in principle using tests with analytical equilibria; but it still needs to be applied to real data. © ESO 2006;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:1053 / 1058
相关论文
共 50 条
  • [31] MHD turbulence and statistics of energy release in the solar corona
    Georgoulis, M
    Velli, M
    Einaudi, G
    CORONA AND SOLAR WIND NEAR MINIMUM ACTIVITY - FIFTH SOHO WORKSHOP, 1997, 404 : 401 - 406
  • [32] Possible Role of MHD Waves in Heating the Solar Corona
    B. N. Dwivedi
    V. S. Pandey
    Solar Physics, 2009, 257 : 215 - 215
  • [33] THE POSSIBLE ROLE OF MHD WAVES IN HEATING THE SOLAR CORONA
    PORTER, LJ
    KLIMCHUK, JA
    STURROCK, PA
    ASTROPHYSICAL JOURNAL, 1994, 435 (01): : 482 - 501
  • [34] Radiation effects on the MHD wave behavior in the solar corona
    Mikhalyaev, B. B.
    Veselovskii, I. S.
    Khongorova, O. V.
    SOLAR SYSTEM RESEARCH, 2013, 47 (01) : 50 - 57
  • [35] COMPUTATION OF COMPLEX EQUILIBRIA BY NONLINEAR OPTIMIZATION
    LANTAGNE, G
    MARCOS, B
    CAYROL, B
    COMPUTERS & CHEMICAL ENGINEERING, 1988, 12 (06) : 589 - 599
  • [36] Computation of linear MHD instabilities with the multi-region relaxed MHD energy principle
    Kumar, A.
    Qu, Z.
    Hole, M. J.
    Wright, A. M.
    Loizu, J.
    Hudson, S. R.
    Baillod, A.
    Dewar, R. L.
    Ferraro, N. M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (04)
  • [37] Thermodynamic Structure of the Solar Corona: Tomographic Reconstructions and MHD Modeling
    Diego G. Lloveras
    Alberto M. Vásquez
    Federico A. Nuevo
    Cecilia Mac Cormack
    Nishtha Sachdeva
    Ward Manchester
    Bartholomeus Van der Holst
    Richard A. Frazin
    Solar Physics, 2020, 295
  • [38] MHD WAVES IN THE COLLISIONAL PLASMA OF THE SOLAR CORONA AND TERRESTRIAL IONOSPHERE
    Nekrasov, A. K.
    Pilipenko, V. A.
    SOLAR-TERRESTRIAL PHYSICS, 2020, 6 (04): : 17 - 23
  • [39] MHD evolution of a fragment of a CME core in the outer solar corona
    Pagano, P.
    Reale, F.
    Orlando, S.
    Peres, G.
    ASTRONOMY & ASTROPHYSICS, 2007, 464 (02) : 753 - 760
  • [40] MHD-driven kinetic dissipation in the solar wind and corona
    Leamon, RJ
    Matthaeus, WH
    Smith, CW
    Zank, GP
    Mullan, DJ
    Oughton, S
    ASTROPHYSICAL JOURNAL, 2000, 537 (02): : 1054 - 1062