Improving Generalization of Deepfake Detection With Data Farming and Few-Shot Learning

被引:19
|
作者
Korshunov, Pavel [1 ]
Marcel, Sebastien [1 ]
机构
[1] Idiap Res Inst, Biometr Secur & Privacy Grp, CH-1920 Martigny, Switzerland
关键词
Deepfakes detection; generalization; evaluation; deepfake dataset;
D O I
10.1109/TBIOM.2022.3143404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in automated video and audio editing tools, generative adversarial networks (GANs), and social media allow creation and fast dissemination of high quality tampered videos, which are generally called deepfakes. Typically, in these videos, a face is swapped with someone else's using GANs. Accessible open source software and apps for the face swapping led to a wide and rapid dissemination of the generated deepfakes, posing a significant technical challenge for their detection and filtering. In response to the threat, which deepfake videos can pose to our trust in video evidence, several large datasets of deepfake videos and several methods to detect them were proposed recently. However, the proposed methods suffer from a problem of overfitting on the training data and the lack of the generalization across different databases and the generative models. Therefore, in this paper, we investigate the techniques for improving the generalization of deepfake detection methods that can be employed in practical settings. We have selected two popular state of the art deepfake detectors: based on Xception and EfficientNet models, and we use five databases: from Google and Jigsaw, FaceForensics++, DeeperForensics, Celeb-DF, and our own publicly available large dataset DF-Mobio. To improve generalization, we apply different augmentation strategies used during training, including a proposed aggressive 'data farming' technique based on random patches. We also tested two fewshot tuning methods, when either a first convolutional layer or a last layer of a pre-trained model is tuned on 100 seconds from a training set of the test database. The experimental results clearly expose the generalization problem of deepfake detection methods, since the accuracy drops significantly when a model is trained on one dataset and evaluated on another. However, the silver lining is that an aggressive augmentation during training and a fewshot tuning on the test database can improve the accuracy of the detection methods in a cross-database scenario. As a side observation, we show the importance of database selection for training and evaluation, as FaceForensics++ is found to be better to use for training, while DeeperForensics is found to be significantly more challenging as a test database.
引用
收藏
页码:386 / 397
页数:12
相关论文
共 50 条
  • [21] Enhancing Generalization in Few-Shot Learning for Detecting Unknown Adversarial Examples
    Liu, Wenzhao
    Zhang, Wanli
    Yang, Kuiwu
    Chen, Yue
    Guo, Kaiwei
    Wei, Jianghong
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [22] Dynamic relevance learning for few-shot object detection
    Liu, Weijie
    Cai, Xiaojie
    Wang, Chong
    Li, Haohe
    Yu, Shenghao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [23] An Intrusion Detection Method Using Few-Shot Learning
    Yu, Yingwei
    Bian, Naizheng
    IEEE ACCESS, 2020, 8 (08): : 49730 - 49740
  • [24] Anomaly Detection via Few-Shot Learning on Normality
    Ando, Shin
    Yamamoto, Ayaka
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 275 - 290
  • [25] Active Few-Shot Learning for Sound Event Detection
    Wang, Yu
    Cartwright, Mark
    Bello, Juan Pablo
    INTERSPEECH 2022, 2022, : 1551 - 1555
  • [26] Few-Shot Object Detection via Metric Learning
    Zhu Min
    Zhang Chongyang
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [27] Few-shot object detection via baby learning
    Vu, Anh-Khoa Nguyen
    Nguyen, Nhat-Duy
    Nguyen, Khanh-Duy
    Nguyen, Vinh-Tiep
    Ngo, Thanh Duc
    Do, Thanh-Toan
    Nguyen, Tam V.
    IMAGE AND VISION COMPUTING, 2022, 120
  • [28] Learning to Learn from Corrupted Data for Few-Shot Learning
    An, Yuexuan
    Zhao, Xingyu
    Xue, Hui
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3423 - 3431
  • [29] Predicting the Generalization Ability of a Few-Shot Classifier
    Bontonou, Myriam
    Bethune, Louis
    Gripon, Vincent
    INFORMATION, 2021, 12 (01) : 1 - 19
  • [30] Few-shot Object Detection with Refined Contrastive Learning
    Shangguan, Zeyu
    Huai, Lian
    Liu, Tong
    Jiang, Xingqun
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 991 - 996