Unsupervised Domain Adaptation Via Contrastive Adversarial Domain Mixup: A Case Study on COVID-19

被引:3
|
作者
Zeng H. [1 ]
Yue Z. [1 ]
Shang L. [1 ]
Zhang Y. [1 ]
Wang D. [1 ]
机构
[1] School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL
来源
关键词
Contrastive domain mixup; domain adaptation; misinformation detection; question answering;
D O I
10.1109/TETC.2024.3354419
中图分类号
学科分类号
摘要
Training large deep learning (DL) models with high performance for natural language downstream tasks usually requires rich-labeled data. However, in a real-world application of COVID-19 information service (e.g., misinformation detection, question answering), a fundamental challenge is the lack of the labeled COVID data to enable supervised end-to-end training of the models for different downstream tasks, especially at the early stage of the pandemic. To address this challenge, we propose an unsupervised domain adaptation framework using contrastive learning and adversarial domain mixup to transfer the knowledge from an existing source data domain to the target COVID-19 data domain. In particular, to bridge the gap between the source domain and the target domain, our method reduces a radial basis function (RBF) based discrepancy between these two domains. Moreover, we leverage the power of domain adversarial examples to establish an intermediate domain mixup, where the latent representations of the input text from both domains could be mixed during the training process. In this paper, we focus on two prevailing downstream tasks in mining COVID-19 text data: COVID-19 misinformation detection and COVID-19 news question answering. Extensive domain adaptation experiments on multiple real-world datasets suggest that our method can effectively adapt misinformation detection and question answering systems to the unseen COVID-19 target domain with significant improvements compared to the state-of-the-art baselines. Authors
引用
收藏
页码:1 / 12
页数:11
相关论文
共 50 条
  • [41] Contrastive Adversarial Domain Adaptation Networks for Speaker Recognition
    Li, Longxin
    Mak, Man-Wai
    Chien, Jen-Tzung
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (05) : 2236 - 2245
  • [42] Unsupervised Domain Adaptation with Contrastive Learning for OCT Segmentation
    Gomariz, Alvaro
    Lu, Huanxiang
    Li, Yun Yvonna
    Albrecht, Thomas
    Maunz, Andreas
    Benmansour, Fethallah
    Valcarcel, Alessandra M.
    Luu, Jennifer
    Ferrara, Daniela
    Goksel, Orcun
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 351 - 361
  • [43] Unsupervised domain adaptation for Covid-19 classification based on balanced slice Wasserstein distance
    Gu, Jiawei
    Qian, Xuan
    Zhang, Qian
    Zhang, Hongliang
    Wu, Fang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [44] Unsupervised Domain Adaptation for Dysarthric Speech Detection via Domain Adversarial Training and Mutual Information Minimization
    Wang, Disong
    Deng, Liqun
    Yeung, Yu Ting
    Chen, Xiao
    Liu, Xunying
    Meng, Helen
    INTERSPEECH 2021, 2021, : 2956 - 2960
  • [45] Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training
    Mahmood, Faisal
    Chen, Richard
    Durr, Nicholas J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (12) : 2572 - 2581
  • [46] InterBN: Channel Fusion for Adversarial Unsupervised Domain Adaptation
    Wang, Mengzhu
    Wang, Wei
    Li, Baopu
    Zhang, Xiang
    Lan, Long
    Tan, Huibin
    Liang, Tianyi
    Yu, Wei
    Luo, Zhigang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3691 - 3700
  • [47] Class Discriminative Adversarial Learning for Unsupervised Domain Adaptation
    Zhou, Lihua
    Ye, Mao
    Zhu, Xiatian
    Li, Shuaifeng
    Liu, Yiguang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4318 - 4326
  • [48] Unsupervised domain adaptation with Joint Adversarial Variational AutoEncoder
    Li, Yuze
    Zhang, Yan
    Yang, Chunling
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [49] Adversarial Learning and Interpolation Consistency for Unsupervised Domain Adaptation
    Zhao, Xin
    Wang, Shengsheng
    IEEE ACCESS, 2019, 7 : 170448 - 170456
  • [50] Unsupervised Adversarial Domain Adaptation Network for Semantic Segmentation
    Liu, Wei
    Su, Fulin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (11) : 1978 - 1982