Depth-Visual-Inertial (DVI) Mapping System for Robust Indoor 3D Reconstruction

被引:0
|
作者
Hamesse, Charles [1 ,2 ]
Vlaminck, Michiel [2 ]
Luong, Hiep [2 ]
Haelterman, Rob [1 ]
机构
[1] Royal Mil Acad, Dept Math, B-1000 Brussels, Belgium
[2] Univ Ghent, IMEC IPI URC, B-9000 Ghent, Belgium
来源
关键词
Mapping; localization; RGB-D perception; search and rescue robots; REAL-TIME; LIDAR; ODOMETRY; LIO;
D O I
10.1109/LRA.2024.3487496
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose the Depth-Visual-Inertial (DVI) mapping system: a robust multi-sensor fusion framework for dense 3D mapping using time-of-flight cameras equipped with RGB and IMU sensors. Inspired by recent developments in real-time LiDAR-based odometry and mapping, our system uses an error-state iterative Kalman filter for state estimation: it processes the inertial sensor's data for state propagation, followed by a state update first using visual-inertial odometry, then depth-based odometry. This sensor fusion scheme makes our system robust to degenerate scenarios (e.g. lack of visual or geometrical features, fast rotations) and to noisy sensor data, like those that can be obtained with off-the-shelf time-of-flight DVI sensors. For evaluation, we propose the new Bunker DVI Dataset, featuring data from multiple DVI sensors recorded in challenging conditions reflecting search-and-rescue operations. We show the superior robustness and precision of our method against previous work. Following the open science principle, we make both our source code and dataset publicly available.
引用
收藏
页码:11313 / 11320
页数:8
相关论文
共 50 条
  • [1] Robust Reconstruction Method of 3D Room Layout with Visual-Inertial Module
    Zhang H.
    Fang Y.
    Li M.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (02): : 262 - 269
  • [2] 3D Indoor Mapping and BIM Reconstruction Editorial
    Bassier, Maarten
    Poux, Florent
    Nikoohemat, Shayan
    REMOTE SENSING, 2023, 15 (07)
  • [3] Visual Odometry and 3D Mapping in Indoor Environments
    Wu, Qinfan
    Li, Qing
    Cheng, Nong
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 348 - 354
  • [4] ROBUST DEPTH ESTIMATION FOR EFFICIENT 3D FACE RECONSTRUCTION
    Zheng, Ying
    Wang, Zengfu
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1516 - 1519
  • [5] Depth camera indoor mapping for 3D virtual radio play
    Virtanen, Juho-Pekka
    Kurkela, Matti
    Turppa, Tuomas
    Vaaja, Matti T.
    Julin, Arttu
    Kukko, Antero
    Hyyppa, Juha
    Ahlavuo, Marika
    von Numers, Jessica Eden
    Haggren, Henrik
    Hyyppa, Hannu
    PHOTOGRAMMETRIC RECORD, 2018, 33 (162): : 171 - 195
  • [6] Depth Filtering in 3D Reconstruction of Indoor Scenes Based on Kinect
    Wu, Lei
    Chai, Senchun
    2014 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2014), VOL 1, 2014, : 356 - 359
  • [7] Learned Depth Estimation of 3D Imaging Radar for Indoor Mapping
    Xu, Ruoyang
    Dong, Wei
    Sharma, Akash
    Kaess, Michael
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 13260 - 13267
  • [8] 3D Reconstruction by Pretrained Features and Visual-Inertial Odometry
    Kunbum, Park
    Tsuchiya, Takeshi
    PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 2, 2023, 913 : 241 - 252
  • [9] A 3D Reconstruction System of Indoor Scenes with Rotating Platform
    Zhang, Feng
    Shi, Limin
    Xu, Zhenhui
    Hu, Zhanyi
    ISCSCT 2008: INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY, VOL 2, PROCEEDINGS, 2008, : 554 - 558
  • [10] 3D reconstruction of indoor environments
    Sequeira, V
    Goncalves, JGM
    Ribeiro, MI
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL II, 1996, : 405 - 408