Decoding Gestures in Electromyography: Spatiotemporal Graph Neural Networks for Generalizable and Interpretable Classification

被引:0
|
作者
University of Minnesota, College of Engineering and Science, Department of Computer Science, Minneapolis [1 ]
MN
55455, United States
不详 [2 ]
MN
55455, United States
机构
来源
IEEE Trans. Neural Syst. Rehabil. Eng. | 1600年 / 404-419卷 / 2025期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
79
引用
收藏
相关论文
共 50 条
  • [21] Generalizable deep neural networks for image quality classification of cervical images
    Syed Rakin Ahmed
    Brian Befano
    Didem Egemen
    Ana Cecilia Rodriguez
    Kanan T. Desai
    Jose Jeronimo
    Kayode O. Ajenifuja
    Christopher Clark
    Rebecca Perkins
    Nicole G. Campos
    Federica Inturrisi
    Nicolas Wentzensen
    Paul Han
    Diego Guillen
    Judy Norman
    Andrew T. Goldstein
    Margaret M. Madeleine
    Yeycy Donastorg
    Mark Schiffman
    Silvia de Sanjose
    Jayashree Kalpathy-Cramer
    Scientific Reports, 15 (1)
  • [22] A Classification of Gestures by sEMG Signals Based on Convolutional Neural Networks
    Liu, Jihong
    An, Chengyang
    Hu, An
    Lv, Songwei
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 124 : 26 - 26
  • [23] GSD-GNN: Generalizable and Scalable Algorithms for Decoupled Graph Neural Networks
    Yu, Yunfeng
    Lin, Longlong
    Liu, Qiyu
    Wang, Zeli
    Ou, Xi
    Jia, Tao
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 64 - 72
  • [24] Classification of Electromyography Signal of Diabetes using Artificial Neural Networks
    Zulkifli, Muhammad Fathi Yakan
    Nasir, Noorhamizah Mohamed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 433 - 438
  • [25] Imbalanced Graph Classification via Graph-of-Graph Neural Networks
    Wang, Yu
    Zhao, Yuying
    Shah, Neil
    Derr, Tyler
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2068 - 2077
  • [26] Toward Interpretable Graph Neural Networks via Concept Matching Model
    Bui, Tien-Cuong
    Li, Wen-syan
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 950 - 955
  • [27] Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
    Minyi Dai
    Mehmet F. Demirel
    Yingyu Liang
    Jia-Mian Hu
    npj Computational Materials, 7
  • [28] Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
    Dai, Minyi
    Demirel, Mehmet F.
    Liang, Yingyu
    Hu, Jia-Mian
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [29] Explanation-based Graph Neural Networks for Graph Classification
    Seo, Sangwoo
    Jung, Seungjun
    Kim, Changick
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2836 - 2842
  • [30] Effects of Graph Pooling Layers on Classification with Graph Neural Networks
    Studer, Linda
    Wallau, Jannis
    Ingold, Rolf
    Fischer, Andreas
    2020 7TH SWISS CONFERENCE ON DATA SCIENCE, SDS, 2020, : 57 - 58