Towards Sustainability in Hydraulic Machinery Manufacturing by 3D Printing

被引:1
|
作者
Remache, Abel [1 ]
Pérez-Sánchez, Modesto [2 ]
Hidalgo, Víctor Hugo [3 ]
Ramos, Helena M. [4 ]
Sánchez-Romero, Francisco-Javier [5 ]
机构
[1] Industrial Design Department, Facultad de Ingeniería y Ciencias Aplicadas, Universidad Central del Ecuador, Quito,170129, Ecuador
[2] Hydraulic Engineering and Environmental Department, Universitat Politècnica de València, Valencia,46022, Spain
[3] Laboratorio de Mecánica Informática, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito,170517, Ecuador
[4] Civil Engineering Research and Innovation for Sustainability (CERIS), Department of Civil Engineering, Architecture and Environment, Instituto Superior Técnico, University of Lisbon, Lisbon,1049-001, Portugal
[5] Rural and Agrifood Engineering Department, Universitat Politècnica de València, Valencia,46022, Spain
关键词
Compaction - Hydraulic motors - Impellers - Process control - Turbine components;
D O I
10.3390/pr12122664
中图分类号
学科分类号
摘要
Material wear, maintenance costs, performance, efficiency, and corrosion are some of the issues that turbomachinery impellers may encounter. The optimization of impellers through additive manufacturing (AM) has been the focus of extensive research, aiming to address these challenges in turbine, pump, compressor, fan, and mixer components. This research aims to identify and analyze the main techniques currently being developed to tackle several of these issues. Evaluating the published research, the methodology highlights various AM techniques applied to impellers and related components, as well as the diverse materials used in functional system elements. The analysis revealed that the most commonly used additive manufacturing technologies for the production of turbomachinery components are FDM, with a 22% application rate, and powder bed fusion technology, accounting for 35%, utilized for high-complexity parts and even superalloys. Although more expensive, these technologies employ materials with superior resistance capabilities, surpass the limitations of conventional machining, optimize manufacturing times, and allow for the fine-tuning of multiple parameters. In terms of wear and corrosion resistance, materials such as Inconel 718 exhibited a loss of less than 0.1 mpy (mils per year) in highly corrosive environments, representing a significant improvement over traditional materials. © 2024 by the authors.
引用
收藏
相关论文
共 50 条
  • [41] Use of 3D Printing for Horn Antenna Manufacturing
    Olivova, Jana
    Popela, Miroslav
    Richterova, Marie
    Stefl, Eduard
    ELECTRONICS, 2022, 11 (10)
  • [42] Trends in Commercial 3D Printing and Additive Manufacturing
    Gordon, Rachel
    3D PRINTING AND ADDITIVE MANUFACTURING, 2015, 2 (02) : 89 - 90
  • [43] Additive manufacturing frontier: 3D printing electronics
    Bingheng Lu
    Hongbo Lan
    Hongzhong Liu
    Opto-Electronic Advances, 2018, 1 (01) : 11 - 20
  • [44] An overview of additive manufacturing (3D printing) for microfabrication
    Bhushan, Bharat
    Caspers, Matt
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (04): : 1117 - 1124
  • [45] A review on 3D printing: An additive manufacturing technology
    Jadhav, Aniket
    Jadhav, Vijay S.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 2094 - 2099
  • [46] Additive manufacturing (3D printing) in superficial brachytherapy
    Bellis, Robert
    Rembielak, Agata
    Barnes, Elizabeth A.
    Paudel, Moti
    Ravi, Ananth
    JOURNAL OF CONTEMPORARY BRACHYTHERAPY, 2021, 13 (04) : 468 - 482
  • [47] Design and Manufacturing of Microwave Components by 3D Printing
    Delmonte, Nicolo
    Silvestri, Lorenzo
    Tomassoni, Cristiano
    Piekarz, Ilona
    Sorocki, Jakub
    Perregrini, Luca
    Bozzi, Maurizio
    PROCEEDINGS OF THE 2022 21ST MEDITERRANEAN MICROWAVE SYMPOSIUM (MMS 2022), 2022, : 454 - 459
  • [48] Additive manufacturing frontier: 3D printing electronics
    Lu, Bingheng
    Lan, Hongbo
    Liu, Hongzhong
    OPTO-ELECTRONIC ADVANCES, 2018, 1 (01): : 1 - 10
  • [49] Additive manufacturing and 3D printing of metallic biomaterials
    Chua K.
    Khan I.
    Malhotra R.
    Zhu D.
    Engineered Regeneration, 2021, 2 : 288 - 299
  • [50] Production planning in additive manufacturing and 3D printing
    Li, Qiang
    Kucukkoc, Ibrahim
    Zhang, David Z.
    Computers and Operations Research, 2017, 83 : 1339 - 1351