Optimization problem of the rigid body motion with the geodesic frame

被引:0
|
作者
Sager, Ilgin [1 ]
Abazari, Nemat [2 ]
机构
[1] Department of Mathematics, Izmir University of Economics, Izmir, Turkey
[2] Department of Mathematics, Islamic Azad university-Ardabil Branch, Ardabil, Iran
关键词
Rigid structures - Optimal control systems - Geodesy - Cost functions - Motion planning - Hamiltonians - Problem solving;
D O I
暂无
中图分类号
学科分类号
摘要
This study tries to solve the motion of a rigid body, its optimal control problem on the Lie group SE(3) with respect to geodesic frame of curves on the surface in Euclidian 3-space. In this case, optimal control problem is solved on the Lie group SE(3). The motion planning problem is formulated as an optimal control problem in which the cost function to be minimized is equivalent to integrate the conjugated square norm of Darboux vector with respect to the geodesic frame of the curve. The coordinate free Maximum Principle is applied to the theory of integrable Hamiltonian systems to solve this problem.
引用
收藏
页码:251 / 256
相关论文
共 50 条
  • [21] Topology Optimization of Large Motion Rigid Body Mechanisms With Nonlinear Kinematics
    Sedlaczek, Kai
    Eberhard, Peter
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2009, 4 (02): : 1 - 8
  • [22] ON THE EQUATIONS OF RIGID BODY MOTION
    MACMILLAN, EH
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1993, 31 (01) : 171 - 181
  • [23] Random Motion of a Rigid Body
    Ming Liao
    Journal of Theoretical Probability, 1997, 10 : 201 - 211
  • [24] Random motion of a rigid body
    Liao, M
    JOURNAL OF THEORETICAL PROBABILITY, 1997, 10 (01) : 201 - 211
  • [25] THE LAGRANGE RIGID BODY MOTION
    RATIU, T
    VANMOERBEKE, P
    ANNALES DE L INSTITUT FOURIER, 1982, 32 (01) : 211 - 234
  • [26] On the motion of a magnetized rigid body
    Hussein, A. M.
    ACTA MECHANICA, 2017, 228 (11) : 4017 - 4023
  • [27] NOTE ON RIGID BODY MOTION
    BISSHOPP, KE
    JOURNAL OF MECHANISMS, 1971, 6 (03): : 259 - &
  • [28] On the motion of a magnetized rigid body
    A. M. Hussein
    Acta Mechanica, 2017, 228 : 4017 - 4023
  • [29] RECENT RESULTS ON THE PROBLEM OF MOTION OF VISCOUS FLUID AROUND A ROTATING RIGID BODY
    Deuring, P.
    Kracmar, S.
    Necasova, S.
    TOPICAL PROBLEMS OF FLUID MECHANICS 2020, 2020, : 42 - 47
  • [30] Properties of the solution of a variational problem concerning the motion of a rigid body in a Stokes fluid
    P. I. Plotnikov
    V. N. Starovoitov
    B. N. Starovoitova
    Doklady Mathematics, 2012, 86 : 615 - 621