Implementing augmented deep Machine learning for effective shallow water table management and forecasting

被引:0
|
作者
Zeynoddin, Mohammad [1 ]
Gumiere, Silvio Jose [1 ]
Bonakdari, Hossein [2 ]
机构
[1] Univ Laval, Dept Soils & Agrifood Engn, Quebec City, PQ, Canada
[2] Univ Ottawa, Dept Civil Engn, Ottawa, ON, Canada
关键词
LSTM; ELM; Holt Winters; Preprocessing; Hybrid Modeling; State Space; GROUNDWATER LEVEL; LINE-SEARCH; REGION; DEPTH; PREDICTION; REGRESSION; ALGORITHM; MODELS;
D O I
10.1016/j.jhydrol.2024.132371
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study addresses the gap in understanding and forecasting shallow water table depth (WTD), a critical factor in groundwater resource management and agricultural productivity. Despite the importance of accurately forecasting WTD for sustainable water resource management, current methods frequently struggle to capture the complexities and dynamics of WTD fluctuations. In response, this research, which was conducted in Que<acute accent>bec, Canada, leverages machine learning techniques-namely, extreme learning machines (ELMs) and long shortterm memory (LSTM) networks, augmented by the Holt-Winters (HW) state-space method-to develop a comprehensive analysis and forecasting approach for shallow WTD. The datasets were recorded by 8 sensors with hourly temporal resolutions from June to September, covering the growing season. The objective was to increase forecast accuracy by employing a detailed structural analysis of WTD time series data, selecting appropriate forecast steps, and fine-tuning model inputs through statistical tests and model-agnostic interpretation methods. The performance was evaluated via various metrics, including the correlation coefficient (R), root mean square error (RMSE), mean absolute relative error (MARE), and Theil's U accuracy and quality coefficients, across shortto long-term forecasts (1-, 12-, 24-, 48-, and 72-hour ahead). Integration of HW with the ELM and LSTM models markedly improved the forecasting capabilities, particularly for the LSTM model, which achieved high accuracy of R = 0.988 for 1-hour forecasts and low error rates (RMSE = 0.648 cm, MARE = 0.007, UI = 0.005, and UII = 0.010), although accuracy decreased for longer forecast horizons, resulting in the lowest accuracy for 72-hour forecasts, with R = 0.638, RMSE = 4.550 cm, MARE = 0.051, UI = 0.036, and UII = 0.071. Similarly, the ELM model showed promising results in short-term forecasts when coupled with HW (R = 0.988, RMSE = 0.676 cm, MARE = 0.007, UI = 0.005, and UII = 0.010) but experienced a decrease in performance accuracy over more extended forecast periods (R = 0.707, RMSE = 5.559 cm, MARE = 0.053, UI = 0.045, and UII = 0.089). Although the ELM model presented a negligible strong correlation in some forecast steps, the LSTM model offered consistently higher forecast accuracy and quality across all assessed horizons. The study demonstrates the superiority of the LSTM model in consistently providing more accurate forecasts, highlighting the importance of integrating HW to capture complex temporal patterns in hydrological forecasting. This advancement in forecasting WTD has substantial implications for enhancing groundwater resource management and agricultural decision-making, significantly contributing to sustainable water resource utilization and supporting agricultural productivity through informed data-driven practices.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Forecasting of river water flow rate with machine learning
    Ilhan, Akin
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22): : 20341 - 20363
  • [32] Forecasting of river water flow rate with machine learning
    Akin Ilhan
    Neural Computing and Applications, 2022, 34 : 20341 - 20363
  • [33] Building thermal load prediction through shallow machine learning and deep learning
    Wang, Zhe
    Hong, Tianzhen
    Piette, Mary Ann
    APPLIED ENERGY, 2020, 263 (263)
  • [34] Time Series Forecasting Based on Deep Extreme Learning Machine
    Guo, Xuqi
    Pang, Yusong
    Yan, Gaowei
    Qiao, Tiezhu
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6151 - 6156
  • [35] A DEEP LEARNING APPROACH TO ELECTRIC LOAD FORECASTING OF MACHINE TOOLS
    Dietrich, B.
    Walther, J.
    Chen, Y.
    Weigold, M.
    MM SCIENCE JOURNAL, 2021, 2021 : 5283 - 5290
  • [36] Energy generation forecasting: elevating performance with machine and deep learning
    Aristeidis Mystakidis
    Evangelia Ntozi
    Konstantinos Afentoulis
    Paraskevas Koukaras
    Paschalis Gkaidatzis
    Dimosthenis Ioannidis
    Christos Tjortjis
    Dimitrios Tzovaras
    Computing, 2023, 105 : 1623 - 1645
  • [37] Energy generation forecasting: elevating performance with machine and deep learning
    Mystakidis, Aristeidis
    Ntozi, Evangelia
    Afentoulis, Konstantinos
    Koukaras, Paraskevas
    Gkaidatzis, Paschalis
    Ioannidis, Dimosthenis
    Tjortjis, Christos
    Tzovaras, Dimitrios
    COMPUTING, 2023, 105 (08) : 1623 - 1645
  • [38] Deep Uncertainty Quantification: A Machine Learning Approach for Weather Forecasting
    Wang, Bin
    Lu, Jie
    Yan, Zheng
    Luo, Huaishao
    Li, Tianrui
    Zheng, Yu
    Zhang, Guangquan
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2087 - 2095
  • [39] Predicting and forecasting water quality using deep learning
    Debow, Ahmad
    Shweikani, Samaah
    Aljoumaa, Kadan
    INTERNATIONAL JOURNAL OF SUSTAINABLE AGRICULTURAL MANAGEMENT AND INFORMATICS, 2023, 9 (02) : 114 - 135
  • [40] Statistical, machine learning and deep learning forecasting methods: Comparisons and ways forward
    Makridakis, Spyros
    Spiliotis, Evangelos
    Assimakopoulos, Vassilios
    Semenoglou, Artemios-Anargyros
    Mulder, Gary
    Nikolopoulos, Konstantinos
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2023, 74 (03) : 840 - 859