Composite copper foil current collectors with sandwich structure for high-energy density and safe lithium-ion batteries

被引:0
|
作者
Dun, Xueyang [1 ]
Wang, Mingyong [1 ]
Shi, Haotian [1 ]
Xie, Jiajun [1 ]
Wei, Meiyu [1 ]
Dai, Lei [2 ]
Jiao, Shuqiang [1 ,3 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] North China Univ Sci & Technol, Coll Mat Sci & Engn, Hebei Prov Lab Inorgan Nonmet Mat, Tangshan 063210, Peoples R China
[3] Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Composite copper foil; Energy density; Copper plating; Bonding force; FLEXIBLE CURRENT COLLECTOR; ELECTROLESS COPPER; POLYIMIDE FILM; ADHESION; SURFACE; PERFORMANCE; FABRICATION; LIGHTWEIGHT; ULTRALIGHT; ANODE;
D O I
10.1016/j.ensm.2024.103936
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion battery is an efficient energy storage device and have been widely used in mobile electronic devices and electric vehicles. As an indispensable component in lithium-ion batteries (LIBs), copper foil current collector shoulders the important task of collecting current and supporting active materials, and plays a pivotal role in promoting the development of high-performance lithium-ion batteries. Compared with traditional electrolytic copper foil, composite copper foil with a distinctive "Cu-polymer-Cu" sandwich structure significantly reduces the weight of current collector and increases the energy density of battery. In addition, the transverse insulated and flexible polymer interlayer can block heat diffusion and alleviate the expansion stress. Therefore, the safety and cycle performance of lithium-ion battery can be improved. In this review, the requirements of copper foil collectors, the characteristics of polymer interlayer, the advantages of composite copper foil and the preparation methods of composite copper foil are introduced. Aiming at the weak bonding force between copper and polymer in composite copper foil, the improved methods to enlarge the bonding force are summarized. With the emphasis on the key perspectives, the paper will provide valuable inspiration for the rapid development of composite copper foil to advance high-energy density lithium-ion batteries.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Organic carbonized copper foil facilitates the performance of the current collector for lithium-ion batteries
    Xiao, Ze'en
    Rao, Xianfa
    Chen, Jun
    Potapenko, Hanna
    Zhang, Qian
    Zhong, Shengwen
    MATERIALS CHEMISTRY FRONTIERS, 2022, 6 (17) : 2478 - 2490
  • [22] Phytic-Acid-Modified Copper Foil as a Current Collector for Lithium-Ion Batteries
    Gan, Mingtao
    Zhu, Mengjun
    Tu, Jiangping
    Wang, Xiuli
    Gu, Changdong
    METALS, 2024, 14 (02)
  • [23] Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
    Jianlin Li
    Zhijia Du
    Rose E. Ruther
    Seong Jin AN
    Lamuel Abraham David
    Kevin Hays
    Marissa Wood
    Nathan D. Phillip
    Yangping Sheng
    Chengyu Mao
    Sergiy Kalnaus
    Claus Daniel
    David L. Wood
    JOM, 2017, 69 : 1484 - 1496
  • [24] Development of thick cathodes for high-energy lithium-ion batteries
    Rao, Lalith
    Sayre, Jay
    Kim, Jung-Hyun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [25] Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
    Li, Jianlin
    Du, Zhijia
    Ruther, Rose E.
    An, Seong Jin
    David, Lamuel Abraham
    Hays, Kevin
    Wood, Marissa
    Phillip, Nathan D.
    Sheng, Yangping
    Mao, Chengyu
    Kalnaus, Sergiy
    Daniel, Claus
    Wood, David L., III
    JOM, 2017, 69 (09) : 1484 - 1496
  • [26] Interfacial modification of a lightweight carbon foam current collector for high-energy density Si/LCO lithium-ion batteries
    Liu, Zhengjiao
    Bai, Shuai
    Liu, Boli
    Guo, Pengqian
    Lv, Mingzhi
    Liu, Dequan
    He, Deyan
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) : 13168 - 13175
  • [27] Passivation and corrosion of Al current collectors in lithium-ion batteries
    Du, Pin
    Wan, Jiale
    Qu, Jiakang
    Xie, Hongwei
    Wang, Dihua
    Yin, Huayi
    NPJ MATERIALS DEGRADATION, 2024, 8 (01)
  • [28] Electrochemical behavior and passivation of current collectors in lithium-ion batteries
    Myung, Seung-Taek
    Hitoshi, Yashiro
    Sun, Yang-Kook
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) : 9891 - 9911
  • [29] High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector
    Chu, Hsun-Chen
    Tuan, Hsing-Yu
    JOURNAL OF POWER SOURCES, 2017, 346 : 40 - 48
  • [30] Preparation of ultra-thin copper - aluminum composite foils for high-energy - density lithium-ion batteries through synergistic electroless plating and electroplating
    Chen, Xuanle
    Zeng, Xuekun
    Li, Shiyu
    Ye, Nan
    Zhan, Yu
    Gong, Ziyi
    Tang, Jiancheng
    Zhuo, Haiou
    APPLIED SURFACE SCIENCE, 2024, 657