Euler-navier-stokes two-phase flow;
Existence;
Low Much number limit;
FLUID MODEL;
VLASOV;
EQUATIONS;
D O I:
10.1016/j.nonrwa.2024.104267
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper is concerned with the two-phase flow model consisting of the compressible isothermal Euler equations coupled with the compressible isentropic Navier-Stokes equations through a drag forcing term.For the 3-D Cauchy problem,we rigorously justify the low Mach number limit, which means that the solutions converge to that of a two-phase flow model coupled with the compressible Euler equations and the incom pressible Navier-Stokes equations locally and globally in time as Mach number goes to zero. MSC 2020:35Q30,35B35,35L6576D3374J40
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & Sci Comp, Xiamen 361005, Fujian, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Tan, Zhong
Tong, Leilei
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & Sci Comp, Xiamen 361005, Fujian, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
机构:
Univ Oxford, Math Inst, Oxford OX1 3LB, England
Northwestern Univ, Dept Math, Evanston, IL 60208 USAUniv Oxford, Math Inst, Oxford OX1 3LB, England
Chen, Gui-Qiang
Perepelitsa, Mikhail
论文数: 0引用数: 0
h-index: 0
机构:
Univ Houston, Dept Math, Houston, TX 77204 USA
Vanderbilt Univ, Nashville, TN USAUniv Oxford, Math Inst, Oxford OX1 3LB, England