Low Mach number limit for the compressible Euler-Navier-Stokes two-phase flow model in R3

被引:0
|
作者
Hong, Hakho [1 ]
Jong, Kwang-Hyon [1 ]
机构
[1] Jik Univ Educ, Fac Educ, Pyongyang, North Korea
关键词
Euler-navier-stokes two-phase flow; Existence; Low Much number limit; FLUID MODEL; VLASOV; EQUATIONS;
D O I
10.1016/j.nonrwa.2024.104267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the two-phase flow model consisting of the compressible isothermal Euler equations coupled with the compressible isentropic Navier-Stokes equations through a drag forcing term.For the 3-D Cauchy problem,we rigorously justify the low Mach number limit, which means that the solutions converge to that of a two-phase flow model coupled with the compressible Euler equations and the incom pressible Navier-Stokes equations locally and globally in time as Mach number goes to zero. MSC 2020:35Q30,35B35,35L6576D3374J40
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Low Mach Number Limit of a Compressible Euler-Korteweg Model
    Wang, Yajie
    Yang, Jianwei
    APPLICATIONS OF MATHEMATICS, 2023, 68 (01) : 99 - 108
  • [2] Low Mach number limit of the full compressible Navier-Stokes-Maxwell system
    Li, Fucai
    Mu, Yanmin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 334 - 344
  • [3] Low Mach number limit of a compressible Euler-Korteweg model
    Yajie Wang
    Jianwei Yang
    Applications of Mathematics, 2023, 68 : 99 - 108
  • [4] ON THE LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE EULER SYSTEM
    Feireisl, Eduard
    Klingenberg, Christian
    Markfelder, Simon
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 1496 - 1513
  • [5] Low Mach number limit of a diffuse interface model for two-phase flows of compressible viscous fluids
    Abels, Helmut
    Liu, Yadong
    Nečasová, Šárka
    GAMM Mitteilungen, 2024, 47 (04)
  • [6] Low Mach Number Limit of Full Compressible Navier–Stokes Equations with Revised Maxwell Law
    Zhao Wang
    Yuxi Hu
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [7] Diffusive wave in the low Mach limit for compressible Navier Stokes equations
    Huang, Feimin
    Wang, Tian-Yi
    Wang, Yong
    ADVANCES IN MATHEMATICS, 2017, 319 : 348 - 395
  • [8] ZERO MACH NUMBER LIMIT OF THE COMPRESSIBLE NAVIER-STOKES-KORTEWEG EQUATIONS
    Li, Yeping
    Yong, Wen-An
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (01) : 233 - 247
  • [9] Low Mach number limit of the compressible Navier-Stokes-Cattaneo equations with general initial data
    Wu, Fei
    Zhang, Shuxing
    Chen, Fangqi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
  • [10] Low Mach number limit of the three-dimensional full compressible Navier–Stokes–Korteweg equations
    Kaijian Sha
    Yeping Li
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70