Naïve Bayes Classifier Model for Detecting Spam Mails

被引:0
|
作者
Kumar S. [1 ]
Gupta K. [2 ]
Gupta M. [1 ]
机构
[1] Department of Statistics, Kirori Mal College, University of Delhi, Delhi
[2] Department of Mathematics, Kirori Mal College, University of Delhi, Delhi
关键词
Artificial intelligence; Machine learning; Naïve Bayes Classifier; Predictive analytics; Supervised machine learning;
D O I
10.1007/s40745-023-00479-z
中图分类号
学科分类号
摘要
In this paper, the machine learning algorithm Naive Bayes Classifier is applied to the Kaggle spam mails dataset to classify the emails in our inbox as spam or ham. The dataset is made up of two main attributes: type and text. The target variable "Type" has two factors: ham and spam. The text variable contains the text messages that will be classified as spam or ham. The results are obtained by employing two different Laplace values. It is up to the decision maker to select error tolerance in ham and spam messages derived from two different Laplace values. Computing software R is used for data analysis. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:1887 / 1897
页数:10
相关论文
共 50 条
  • [41] Chemical named entity recognition in the texts of scientific publications using the naïve Bayes classifier approach
    O. A. Tarasova
    A. V. Rudik
    N. Yu. Biziukova
    D. A. Filimonov
    V. V. Poroikov
    Journal of Cheminformatics, 14
  • [42] A Multi-classifier Framework for Detecting Spam and Fake Spam Messages in Twitter
    Raj, R. Jeberson Retna
    Srinivasulu, Senduru
    Ashutosh, Aldrin
    2020 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT 2020), 2020, : 266 - 270
  • [43] Use of Naïve Bayes Classifier to Assess the Effects of Antipsychotic Agents on Brain Electrical Activity Parameters in Rats
    Yu. I. Sysoev
    D. D. Shits
    M. M. Puchik
    V. A. Prikhodko
    R. D. Idiyatullin
    A. A. Kotelnikova
    S. V. Okovityi
    Journal of Evolutionary Biochemistry and Physiology, 2022, 58 : 1130 - 1141
  • [44] Information credibility evaluation in online professional social network using tree augmented naïve Bayes classifier
    Nan Jing
    Zhao Wu
    Shanshan Lyu
    Vijayan Sugumaran
    Electronic Commerce Research, 2021, 21 : 645 - 669
  • [45] DCDroid: An APK Static Identification Method Based on Naïve Bayes Classifier and Dual-Centrality Analysis
    Han, Lansheng
    Chen, Peng
    Liao, Wei
    IET INFORMATION SECURITY, 2024, 2024
  • [46] Sentiment Analysis of Presidential Candidates of the Republic of Indonesia Using Naïve Bayes Classifier and Support Vector Machine
    Putra, Boby Andika
    Mustakim
    Afdal, M.
    Zarnelly
    Proceedings of the 7th 2023 International Conference on New Media Studies, CONMEDIA 2023, 2023, : 263 - 268
  • [47] Enhancing ontology-driven diagnostic reasoning with a symptom-dependency-aware Naïve Bayes classifier
    Ying Shen
    Yaliang Li
    Hai-Tao Zheng
    Buzhou Tang
    Min Yang
    BMC Bioinformatics, 20
  • [48] Experimental analysis of naïve Bayes classifier based on an attribute weighting framework with smooth kernel density estimations
    Zhong-Liang Xiang
    Xiang-Ru Yu
    Dae-Ki Kang
    Applied Intelligence, 2016, 44 : 611 - 620
  • [49] An attributes weighted Naïve Bayesian Classifier
    Liu, Zhi
    Sang, Guoming
    Lu, Mingyu
    Shi, Lisha
    Journal of Computational Information Systems, 2008, 4 (06): : 2941 - 2946
  • [50] Privacy-preserving Naïve Bayes classification
    Jaideep Vaidya
    Murat Kantarcıoğlu
    Chris Clifton
    The VLDB Journal, 2008, 17 : 879 - 898