Convergence theorems for totally-measurable functions

被引:0
|
作者
Al.I. Cuza University, Faculty of Mathematics, Bd. Carol I, No. 11, Iaşi, 700506, Romania [1 ]
不详 [2 ]
机构
来源
WSEAS Trans. Math. | 2009年 / 10卷 / 614-623期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Convergence of sequence of measurable functions on fuzzy measure spaces
    Li, J
    Yasuda, M
    Jiang, QS
    Suzuki, H
    Wang, ZY
    Klir, GJ
    FUZZY SETS AND SYSTEMS, 1997, 87 (03) : 317 - 323
  • [32] On p-Convergence in Measure of a Sequence of Measurable Functions
    Boccuto, A.
    Papachristodoulos, Ch.
    Papanastassiou, N.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [33] Multidimensional sliding window pringsheim convergence for measurable functions
    Rabia Savaş
    Richard F. Patterson
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 689 - 698
  • [34] Lacunary statistical and sliding window convergence for measurable functions
    Connor, J.
    Savas, E.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (02) : 416 - 432
  • [35] Virtual continuity of measurable functions of several variables and embedding theorems
    Vershik, A. M.
    Zatitskiy, P. B.
    Petrov, F. V.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2013, 47 (03) : 165 - 173
  • [36] Lacunary Statistical and Sliding Window Convergence for Measurable Functions
    Connor, Jeff
    Savas, Ekrem
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 782 - 784
  • [37] On the convergence of Σn=1∞f(nx) for measurable functions
    Buczolich, Z
    Mauldin, RD
    MATHEMATIKA, 1999, 46 (92) : 337 - 341
  • [38] STRONG AND WEAK NON-LINEAR INTEGRATION OF TOTALLY MEASURABLE FUNCTIONS
    KORVIN, AD
    THO, VV
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (04): : A466 - A466
  • [39] TAUBERIAN THEOREMS FOR THE WEIGHTED MEANS OF MEASURABLE FUNCTIONS OF SEVERAL VARIABLES
    Chen, Chang-Pao
    Chang, Chi-Tung
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (01): : 181 - 199
  • [40] Virtual continuity of measurable functions of several variables and embedding theorems
    A. M. Vershik
    P. B. Zatitskiy
    F. V. Petrov
    Functional Analysis and Its Applications, 2013, 47 : 165 - 173