Convergence theorems for totally-measurable functions

被引:0
|
作者
Al.I. Cuza University, Faculty of Mathematics, Bd. Carol I, No. 11, Iaşi, 700506, Romania [1 ]
不详 [2 ]
机构
来源
WSEAS Trans. Math. | 2009年 / 10卷 / 614-623期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] ON DIFFERENT TYPES OF CONVERGENCES FOR SEQUENCES OF TOTALLY-MEASURABLE FUNCTIONS
    Croitoru, Anca
    Gavrilut, Alina
    Mastorakis, Nikos E.
    PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON SIMULATION, MODELLING AND OPTIMIZATION, 2009, : 196 - +
  • [2] NONLINEAR INTEGRATION OF TOTALLY MEASURABLE FUNCTIONS
    KORVIN, AD
    VANTHO, V
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (03): : A387 - A387
  • [3] CONVERGENCE OF SEQUENCES OF MEASURABLE FUNCTIONS
    WAGNER, E
    WILCZYNSKI, W
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 36 (1-2): : 125 - 128
  • [4] CONVERGENCE OF MEASURABLE RANDOM FUNCTIONS
    GRINBLAT, LS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 74 (02) : 322 - 325
  • [5] SOME SELECTION THEOREMS FOR MEASURABLE FUNCTIONS
    HIMMELBERG, CJ
    VANVLECK, FS
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (02): : 394 - +
  • [6] Rearrangement and convergence in spaces of measurable functions
    Caponetti, D.
    Trombetta, A.
    Trombetta, G.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [7] Convergence of measurable functions in the sense of density
    Maya Altınok
    Mehmet Küçükaslan
    A. Kerem Ünay
    The Journal of Analysis, 2023, 31 : 1487 - 1510
  • [8] Convergence of measurable functions in the sense of density
    Altinok, Maya
    Kucukaslan, Mehmet
    Unay, A. Kerem
    JOURNAL OF ANALYSIS, 2023, 31 (02): : 1487 - 1510
  • [9] Rearrangement and Convergence in Spaces of Measurable Functions
    D Caponetti
    A Trombetta
    G Trombetta
    Journal of Inequalities and Applications, 2007
  • [10] CONVERGENCE ALMOST EVERYWHERE OF MEASURABLE FUNCTIONS
    BUCCHIONI, D
    GOLDMAN, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (16): : 1087 - 1089