Quantum spectra and classical periodic orbit in the cubic billiard

被引:0
|
作者
Department of Physics, Yantai Normal University, Yantai 264025, China [1 ]
不详 [2 ]
机构
来源
Chin. Opt. Lett. | 2006年 / 6卷 / 311-314期
关键词
16;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Classical and quantum chaos in the generalized parabolic lemon-shaped billiard
    Lopac, V.
    Mrkonjic, I.
    Radic, D.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (1-B):
  • [32] Classical and quantum chaos in the generalized parabolic lemon-shaped billiard
    Lopac, V
    Mrkonjic, I
    Radic, D
    PHYSICAL REVIEW E, 1999, 59 (01) : 303 - 311
  • [33] RESUMMATION OF CLASSICAL AND SEMICLASSICAL PERIODIC-ORBIT FORMULAS
    ECKHARDT, B
    RUSSBERG, G
    PHYSICAL REVIEW E, 1993, 47 (03): : 1578 - 1588
  • [34] CONVERGENCE OF THE SEMI-CLASSICAL PERIODIC ORBIT EXPANSION
    ECKHARDT, B
    AURELL, E
    EUROPHYSICS LETTERS, 1989, 9 (06): : 509 - 512
  • [35] Spin chaos manifestation in a driven quantum billiard with spin-orbit coupling
    Khomitsky, D. V.
    Malyshev, A. I.
    Sherman, E. Ya.
    Di Ventra, M.
    PHYSICAL REVIEW B, 2013, 88 (19)
  • [36] Periodic orbit basis for the quantum baker map
    Ermann, Leonardo
    Saraceno, Marcos
    PHYSICAL REVIEW E, 2008, 78 (03):
  • [37] CLASSICAL AND QUANTUM CHAOS OF THE WEDGE BILLIARD .2. QUANTUM-MECHANICS AND QUANTIZATION RULES
    SZEREDI, T
    GOODINGS, DA
    PHYSICAL REVIEW E, 1993, 48 (05) : 3529 - 3544
  • [38] Periodic orbit description of nonadiabatic quantum dynamics
    Dilthey, S
    Stock, G
    PHYSICAL REVIEW LETTERS, 2001, 87 (14) : 140404/1 - 140404/4
  • [40] Quantum work statistics in regular and classical-chaotic dynamical billiard systems
    Rosmej, Sebastian
    Heerwagen, Mattes
    PHYSICAL REVIEW E, 2022, 105 (05)