First stars X. the nature of three unevolved carbon-enhanced metal-poor stars

被引:0
|
作者
Sivarani, T. [1 ]
Beers, T.C. [1 ]
Bonifacio, P. [2 ,3 ,4 ]
Molaro, P. [3 ,4 ]
Cayrel, R. [3 ]
Herwig, F. [5 ]
Spite, M. [3 ]
Spite, F. [3 ]
Plez, B. [6 ]
Andersen, J. [7 ,8 ]
Barbuy, B. [9 ]
Depagne, E. [10 ]
Hill, V. [3 ]
François, P. [3 ]
Nordström, B. [7 ,11 ]
Primas, F. [12 ]
机构
[1] Department of Physics and Astronomy, JINA: Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824, United States
[2] CIFIST Marie Curie Excellence Team
[3] Observatoire de Paris, GEPI, 92195 Meudon Cedex, France
[4] Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Trieste, via Tiepolo 11, 34131 Trieste, Italy
[5] Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, NM 87545, United States
[6] GRAAL, Université de Montpellier II, 34095 Montpellier Cedex 05, France
[7] Niels Bohr Institute, Astronomy, Juliane Maries Vej 30, 2100 Copenhagen, Denmark
[8] Nordic Optical Telescope Scientific Association, Apartado 474, 38 700 Santa Cruz de La Palma, Spain
[9] Universidade de Sao Paulo, Departamento de Astronomia, Rua do Matao 1226, 05508-900 Sao Paulo, Brazil
[10] European Southern Observatory (ESO), Vitacura, Casilla 19001, Santiago 19, Chile
[11] Lund Observatory, Box 43, 221 00 Lund, Sweden
[12] European Southern Observatory (ESO), Karl-Schwarschild-Str. 2, 85749 Garching b. München, Germany
来源
Astronomy and Astrophysics | 1600年 / 459卷 / 01期
关键词
Context. On the order of 20% of the very metal-poor stars in the Galaxy exhibit large carbon enhancements. It is important to establish which astrophysical sites and processes are responsible for the elemental abundance patterns of this early Galactic population. Aims. We seek to understand the nature of the progenitors of three main-sequence turnoff Carbon-Enhanced Metal-Poor (CEMP) stars; CS; 31080-095; 22958-042; and CS 29528-041; based on a detailed abundance analysis. Methods. From high-resolution VLT/UVES spectra (R ∼ 43 000); we determine abundances or upper limits for Li; C; N; O; and other important elements; as well as 12C/13C isotopic ratios. Results. All three stars have -3.30 &le [Fe/H] &le -2.85 and moderate to high CNO abundances. CS 22958-042 is one of the most carbon-rich CEMP stars known ([C/Fe] = +3.2); while CS 29528-041 (one of the few N-enhanced metal-poor stars known) is one of the most nitrogen rich ([N/Fe] = +3.0). Oxygen is very high in CS 31080-095 ([O/Fe] = +2.35) and in CS 22958-042 ([O/Fe] = +1.35). All three stars exhibit [Sr/Fe] 12C/13C = 9; similar to most other CEMP stars without enhanced neutron-capture elements; while 12C/13C ≥ 40 in CS 31080-095. CS 31080-095 and CS 29528-041 have A(Li) ∼ 1.7; below the Spite Plateau; while Li is not detected in CS 22958-042. Conclusions. CS 22958-042 is a CEMP-no star; but the other two stars are in no known class of CEMP star and thus either constitute a new class or are a link between the CEMP-no and CEMP-s classes; adding complexity to the abundance patterns for CEMP stars. We interpret the abundance patterns in our stars to imply that current models for the presumed AGB binary progenitors lack an extra-mixing process; similar to those apparently operating in RGB stars. © ESO 2006;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:125 / 135
相关论文
共 50 条
  • [21] Light element abundances in carbon-enhanced metal-poor stars
    Stancliffe, Richard J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 394 (02) : 1051 - 1060
  • [22] How did Carbon-Enhanced Metal-Poor Stars form?
    Abate, C.
    Pols, O. R.
    Izzard, R. G.
    Mohamed, S.
    de Mink, S. E.
    EVOLUTION OF COMPACT BINARIES, 2011, 447 : 81 - +
  • [23] Binary properties of CH and carbon-enhanced metal-poor stars
    Jorissen, A.
    Van Eck, S.
    Van Winckel, H.
    Merle, T.
    Boffin, H. M. J.
    Andersen, J.
    Nordstrom, B.
    Udry, S.
    Masseron, T.
    Lenaerts, L.
    Waelkens, C.
    ASTRONOMY & ASTROPHYSICS, 2016, 586
  • [24] Fluorine in carbon-enhanced metal-poor stars: a binary scenario
    Lugaro, M.
    de Mink, S. E.
    Izzard, R. G.
    Campbell, S. W.
    Karakas, A. I.
    Cristallo, S.
    Pols, O. R.
    Lattanzio, J. C.
    Straniero, O.
    Gallino, R.
    Beers, T. C.
    ASTRONOMY & ASTROPHYSICS, 2008, 484 (03) : L27 - L30
  • [25] Modelling the evolution and nucleosynthesis of carbon-enhanced metal-poor stars
    Pols, O. R.
    Izzard, R. G.
    Lugaro, M.
    de Mink, S. E.
    ART OF MODELLING STARS IN THE 21ST CENTURY, 2008, (252): : 383 - 389
  • [26] Are Faint Supernovae Responsible for Carbon-enhanced Metal-poor Stars?
    Komiya, Yutaka
    Suda, Takuma
    Yamada, Shimako
    Fujimoto, Masayuki Y.
    ASTROPHYSICAL JOURNAL, 2020, 890 (01):
  • [27] Abundances of carbon-enhanced metal-poor stars as constraints on their formation
    Hansen, C. J.
    Nordstrom, B.
    Hansen, T. T.
    Kennedy, C. R.
    Placco, V. M.
    Beers, T. C.
    Andersen, J.
    Cescutti, G.
    Chiappini, C.
    ASTRONOMY & ASTROPHYSICS, 2016, 588
  • [28] The origins of two classes of carbon-enhanced, metal-poor stars
    Ryan, SG
    Aoki, W
    Norris, JE
    Beers, TC
    ASTROPHYSICAL JOURNAL, 2005, 635 (01): : 349 - 354
  • [29] Refined estimates of carbon abundances for carbon-enhanced metal-poor stars
    Rossi, S.
    Placco, V. M.
    Beers, T. C.
    Marsteller, B.
    Kennedy, C. R.
    Sivarani, T.
    Masseron, T.
    Plez, B.
    FIRST STARS III, 2008, 990 : 154 - +
  • [30] Fluorine in carbon-enhanced metal-poor stars: A binary scenario
    Lugaro, M.
    De Mink, S.E.
    Izzard, R.G.
    Campbell, S.W.
    Karakas, A.I.
    Cristallo, S.
    Pols, O.R.
    Lattanzio, J.C.
    Straniero, O.
    Gallino, R.
    Beers, T.C.
    Astronomy and Astrophysics, 2008, 484 (03):