Cyclic force driven colloidal self-assembly near a solid surface

被引:0
|
作者
Rahman, Md Mahmudur [1 ]
Williams, Stuart J [1 ]
机构
[1] Department of Mechanical Engineering, University of Louisville, KY, Louisville,40292, United States
关键词
Hydrodynamics; -; Gravitation; Suspensions; (fluids);
D O I
暂无
中图分类号
学科分类号
摘要
Hypothesis: Self-assembled colloidal mobility out of a non-equilibrium system can depend on many external and interparticle forces including hydrodynamic forces. While the driving forces guiding colloidal suspension, translation and self-assembly are different and unique, hydrodynamic forces are always present and can significantly influence particle motion. Unfortunately, these interparticle hydrodynamic interactions are typically overlooked. Experiments: Here, we studied the collective behavior of colloidal particles (4.0 µm PMMA), located near the solid surface in a fluid medium confined in a cylindrical cell (3.0 mm diameter, 0.25 mm height) which was rotated vertically at a low rotational speed (20 rpm). The observed colloidal behavior was then validated through a Stokesian dynamics simulation where the concept of hydrodynamic contact force or lubrication interactions are avoided which is not physically intuitive and mathematically cumbersome. Rather, we adopted hard-sphere like colloidal collision or mobility model, while adopting other useful simplification and approximations. Findings: Upon particles settling in a circular orbit, they hydrodynamically interact with each other and evolve in different structures depending on the pattern of gravity forces. Their agglomeration is a function of the applied rotation scheme, either forming colloidal clusters or lanes. While evolving into dynamic structures, colloids also laterally migrate away from the surface. © 2021 Elsevier Inc.
引用
收藏
页码:1402 / 1410
相关论文
共 50 条
  • [21] Columnar self-assembly of colloidal nanodisks
    Saunders, Aaron E.
    Ghezelbash, Ali
    Smilgies, Detlef-M.
    Sigman, Michael B., Jr.
    Korgel, Brian A.
    NANO LETTERS, 2006, 6 (12) : 2959 - 2963
  • [22] An active approach to colloidal self-assembly
    Mallory, S.A.
    Valeriani, Chantal
    Cacciuto, A.
    arXiv, 2021,
  • [23] Self-assembly of patchy colloidal dumbbells
    Avvisati, Guido
    Vissers, Teun
    Dijkstra, Marjolein
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (08):
  • [24] COLLOIDAL SELF-ASSEMBLY Interlocked octapods
    Rupich, Sara M.
    Talapin, Dmitri V.
    NATURE MATERIALS, 2011, 10 (11) : 815 - 816
  • [25] A Review on Colloidal Self-Assembly and their Applications
    Xu, Zongwei
    Wang, Liyang
    Fang, Fengzhou
    Fu, Yongqi
    Yin, Zhen
    CURRENT NANOSCIENCE, 2016, 12 (06) : 725 - 746
  • [26] Proofreading mechanism for colloidal self-assembly
    Zhu, Qian-Ze
    Du, Chrisy Xiyu
    King, Ella M.
    Brenner, Michael P.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [27] COLLOIDAL SELF-ASSEMBLY Reversible actuation
    Furst, Eric M.
    NATURE MATERIALS, 2015, 14 (01) : 19 - 20
  • [28] Feedback Controlled Colloidal Self-Assembly
    Juarez, Jaime J.
    Bevan, Michael A.
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (18) : 3833 - 3839
  • [29] Self-assembly of charged colloidal cubes
    Rosenberg, Margaret
    Dekker, Frans
    Donaldson, Joe G.
    Philipse, Albert P.
    Kantorovich, Sofia S.
    SOFT MATTER, 2020, 16 (18) : 4451 - 4461
  • [30] Nanolithographic self-assembly of colloidal nanoparticles
    V. A. Moshnikov
    A. I. Maksimov
    O. A. Aleksandrova
    I. A. Pronin
    A. A. Karmanov
    E. I. Terukov
    N. D. Yakushova
    I. A. Averin
    A. A. Bobkov
    N. V. Permyakov
    Technical Physics Letters, 2016, 42 : 967 - 969