A micro-channel cooling system with two-phase looped thermosyphon for a supercritical CO2 Brayton cycle

被引:0
|
作者
Yu, Liqi [1 ,2 ]
Li, Zhigang [1 ,2 ]
Guo, Chaohong [1 ,2 ]
Zhang, Haisong [1 ,2 ]
Wang, Bo [1 ,2 ]
Xu, Xiang [1 ,2 ]
机构
[1] Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing,100190, China
[2] School of Engineering Science, University of Chinese Academy of Sciences, Beijing,100049, China
基金
中国国家自然科学基金;
关键词
Cooling towers - Critical temperature - Electronic cooling - Liquefied gases - Liquid films - MATLAB - Siphons - Synthesis gas - Thermosyphons - Two phase flow - Water cooling systems;
D O I
10.1016/j.applthermaleng.2024.124571
中图分类号
学科分类号
摘要
The supercritical Carbon Dioxide (sCO2) closed Brayton cycle is a promising power generation technology, while the efficient cooling of CO2 and precise control of Compressor Inlet Temperature (CIT) is crucial for the high cycle efficiency and stable compressor operation due to the acute variation of thermophysical properties in the near-critical region. In conventional indirect cooling scheme, an intermediate single-phase water circuit is used to transfer heat from CO2 to water at the precooler, and then from water to the environment at the cooling tower, having the disadvantage of large pumping work consumption and high thermal resistance. In this work, a self-driven two-phase looped thermosyphon that significantly enhances the heat transfer by internal evaporation and condensation, is proposed to replace the water circuit. An experimental ultra-compact cooling system, consisting of a looped thermosyphon combined with micro-channel evaporator and condenser, filled with R134a coolant, is designed, fabricated, and tested. Visualized observation of the two-phase flow pattern and simultaneous measurement of the temperature, pressure and mass flow rates are conducted. A nodal analysis method is adopted, and a MATLAB code is developed for analyzing the internal fluid flow and the coupled sCO2-R134a-Air heat transfer, which is validated by experiment data. The results show that, the CO2 temperature could be accurately maintained at a specified near-critical point with a fluctuation of less than 1 K, and the average heat-releasing temperature can be reduced, while considerable pumping work, usually accounting for 2–5 % of the rated power output can be saved, thus contributing to increased cycle efficiency and system compactness. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] Research on the Development of the Supercritical CO2 Dual Brayton Cycle
    Baik, Young-Jin
    Na, Sun Ik
    Cho, Junhyun
    Shin, Hyung-Ki
    Lee, Gilbong
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2016, 40 (10) : 673 - 679
  • [22] Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
    Conboy, Thomas
    Wright, Steven
    Pasch, James
    Fleming, Darryn
    Rochau, Gary
    Fuller, Robert
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2012, 134 (11):
  • [23] THERMAL ENERGY STORAGE FOR THE SUPERCRITICAL CO2 BRAYTON CYCLE
    Bueno, P. C.
    Bates, L.
    Anderson, R.
    Bindra, H.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 9, 2015,
  • [24] THERMODYNAMIC PERFORMANCE ANALYSIS OF SUPERCRITICAL CO2 BRAYTON CYCLE
    Yang, Xiaoping
    Cai, Zhuodi
    THERMAL SCIENCE, 2021, 25 (05): : 3933 - 3943
  • [25] Single-phase and two-phase cooling using hybrid micro-channel/slot-jet module
    Sung, Myung Ki
    Mudawar, Issam
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (15-16) : 3825 - 3839
  • [26] Measurement System for Characterization of Gas-liquid Two-phase Flow in Micro-channel
    Ji, Haifeng
    Huang, Zhiyao
    Wang, Baoliang
    Li, Haiqing
    I2MTC: 2009 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3, 2009, : 473 - 478
  • [27] Mini-Channel Supercritical CO2 Heat Transfer Measurements for Brayton Cycle Regenerators
    Kruizenga, Alan
    Anderson, Mark
    Corradini, Michael
    ICONE 17: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 3, 2009, : 787 - 792
  • [28] CFD simulation on the operation characteristics of CO2 two-phase thermosyphon loop
    Tong, Zhen
    Wu, Hao
    Li, Xiaorui
    Han, Zekun
    APPLIED THERMAL ENGINEERING, 2023, 224
  • [29] Experimental study on the passive regulation of a CO2 two-phase thermosyphon loop
    Tong, Zhen
    Fang, Chunxue
    Zang, Guojian
    Wu, Hao
    APPLIED THERMAL ENGINEERING, 2023, 219
  • [30] Experimental study of instability characteristics of a CO2 two-phase thermosyphon loop
    Fang, Chunxue
    Tong, Zhen
    Zang, Guojian
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023, 142