Higher order and fractional diffusive equations

被引:0
|
作者
Assante, D. [1 ]
Cesarano, C. [1 ]
Fornaro, C. [1 ]
Vazquez, L. [2 ]
机构
[1] Faculty of Engineering, International Telematic University UNINETTUNO, Corso Vittorio Emanuele II no 39, Rome, Italy
[2] Departamento de Matematica Aplicada, Facultad de Informatica, Universidad Complutense de Madrid, Ciudad Universitaria 28040, Madrid, Spain
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.25103/jestr.085.25
中图分类号
学科分类号
摘要
Heat transfer - Polynomials - Partial differential equations
引用
收藏
页码:202 / 204
相关论文
共 50 条
  • [31] ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL ELLIPTIC EQUATIONS
    Rahal, Belgacem
    Zaidi, Cherif
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03): : 575 - 597
  • [32] A Numerical Method to Solve Higher-Order Fractional Differential Equations
    Ricardo Almeida
    Nuno R. O. Bastos
    Mediterranean Journal of Mathematics, 2016, 13 : 1339 - 1352
  • [33] A Numerical Method to Solve Higher-Order Fractional Differential Equations
    Almeida, Ricardo
    Bastos, Nuno R. O.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (03) : 1339 - 1352
  • [34] SHARP STRICHARTZ INEQUALITIES FOR FRACTIONAL AND HIGHER-ORDER SCHRODINGER EQUATIONS
    Brocchi, Gianmarco
    Oliveira e Silva, Diogo
    Quilodran, Rene
    ANALYSIS & PDE, 2020, 13 (02): : 477 - 526
  • [35] Uniform a priori estimates for solutions of higher critical order fractional equations
    Wenxiong Chen
    Leyun Wu
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [36] Classification of solutions to equations involving higher-order fractional Laplacian
    Du, Zhuoran
    Feng, Zhenping
    Hu, Jiaqi
    Li, Yuan
    ANALYSIS AND APPLICATIONS, 2025,
  • [37] Higher order graded mesh scheme for time fractional differential equations
    Madduri, Harshita
    Gande, Naga Raju
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (05):
  • [38] Eigenvalue Problem of Nonlinear Semipositone Higher Order Fractional Differential Equations
    Wu, Jing
    Zhang, Xinguang
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [39] Uniform a priori estimates for solutions of higher critical order fractional equations
    Chen, Wenxiong
    Wu, Leyun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
  • [40] On the oscillatory behavior of solutions of higher order nonlinear fractional differential equations
    Grace, Said R.
    Tunc, Ercan
    GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (03) : 363 - 369