First-principles study on the electronic structure and mechanical properties of palygorskite

被引:0
|
作者
Song, Changhui [1 ,2 ]
Mo, Man [2 ]
Zou, Jing [1 ]
Fang, Zhijie [2 ]
Wang, Haitao [1 ]
机构
[1] Wuhan Inst Technol, Novel Catalyt Mat Hubei Engn Res Ctr, Sch Chem & Environm Engn, Hubei Three Gorges Lab, Wuhan 430205, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Elect Engn, Liuzhou 545006, Peoples R China
关键词
Crystal structure; Palygorskite; First-principles; Electronic structure; Mechanical properties;
D O I
10.1016/j.matlet.2024.137862
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To broaden the applications of palygorskite in the fields of materials science, it is significant to systematically explore the electronic structure and physicochemical properties of palygorskite through density-functional theory and generalized gradient approximation. Herein, the band structure, electronic density of states (DOS), and elastic constants of palygorskite single crystal are calculated via first-principles method. Theoretical studies confirm that the Mg-O bonds of palygorskite are longer and more flexible as compared to those of Si-O bonds. Moreover, the Mg-O bonds exhibits typical ionicity, while the Si-O bonds are more covalent. The subsequent band structure simulation results reveal that valence band maximum and conduction band minimum of palygorskite are all located at the G-point. And, the direct band gap of palygorskite is calculated to be 4.58 eV. Mechanical properties analysis demonstrates the excellent rigidity and outstanding elastic deformation resistance of palygorskite. Additionally, palygorskite exhibits limited ductility, which is characterized by a high Young's modulus and low shear modulus. The in-depth understanding of the electronic structure and mechanical properties of palygorskite provides valuable theoretical guidance for its application in materials science.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Mechanical properties and electronic structure of superhard diamondlike BC5: A first-principles study
    Wang, Yun-Jiang
    Wang, Chong-Yu
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (04)
  • [22] First-Principles Study of Ceramic Interfaces: Structures and Electronic and Mechanical Properties
    Kohyama, Masanori
    Tanaka, Shingo
    SIAIONS AND NON-OXIDES, 2009, 403 : 205 - 206
  • [23] First-principles study of mechanical, electronic and optical properties of Janus structure in transition metal dichalcogenides
    Thanh, Vuong Van
    Van, Nguyen Duy
    Truong, Do Van
    Saito, Riichiro
    Hung, Nguyen Tuan
    APPLIED SURFACE SCIENCE, 2020, 526
  • [24] Strain engineering of antimonene by a first-principles study: Mechanical and electronic properties
    Kripalani, Devesh R.
    Kistanov, Andrey A.
    Cai, Yongqing
    Xue, Ming
    Zhou, Kun
    PHYSICAL REVIEW B, 2018, 98 (08)
  • [25] Crystal Structure Prediction, Electronic Structure and Mechanical Properties of CrB: A First-Principles Investigation
    Liu Fei
    Sun Wei
    Wang Li
    Jia Bin
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (10) : 3399 - 3409
  • [26] Mechanical Properties and Electronic Structure of Mullite Phases Using First-Principles Modeling
    Aryal, Sitaram
    Rulis, Paul
    Ching, Wai-Yim
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2012, 95 (07) : 2075 - 2088
  • [27] First-principles study on the π electronic structure of nanographite
    Nakada, K
    Okada, S
    Igami, M
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2000, 340 : 389 - 394
  • [28] First-principles study of electronic structure for CoSi
    Pan, ZJ
    Zhang, LT
    Wu, JS
    ACTA PHYSICA SINICA, 2005, 54 (01) : 328 - 332
  • [29] First-principles study of electronic structure for CoSi
    Pan, Zhi-Jun
    Zhang, Lan-Ting
    Wu, Jian-Sheng
    Wuli Xuebao/Acta Physica Sinica, 2005, 54 (01): : 328 - 332
  • [30] First-principles study on the π electronic structure of nanographite
    Nakada, Yoko
    Okada, Susumu
    Igami, Masatsura
    Molecular Crystals and Liquid Crystals Science and Technology Section A: Molecular Crystals and Liquid Crystals, 2000, 340 : 389 - 394