Optimization strategy using dynamic radial basis function metamodel

被引:0
|
作者
Peng, Lei [1 ]
Liu, Li [1 ]
Long, Teng [1 ]
机构
[1] School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Function evaluation
引用
收藏
页码:164 / 170
相关论文
共 50 条
  • [31] Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification
    Silvia Volpi
    Matteo Diez
    Nicholas J. Gaul
    Hyeongjin Song
    Umberto Iemma
    K. K. Choi
    Emilio F. Campana
    Frederick Stern
    Structural and Multidisciplinary Optimization, 2015, 51 : 347 - 368
  • [32] A radial basis function method for global optimization
    Gutmann, HM
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (03) : 201 - 227
  • [33] An optimization method based on radial basis function
    Ishikawa, T
    Matsunami, M
    IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) : 1868 - 1871
  • [34] A Radial Basis Function Method for Global Optimization
    H.-M. Gutmann
    Journal of Global Optimization, 2001, 19 : 201 - 227
  • [35] Optimization by Canonical Analysis in a Radial Basis Function
    Praga-Alejo, Rolando J.
    Cantu-Sifuentes, Mario
    Gonzalez-Gonzalez, David S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (19) : 6487 - 6495
  • [36] Conditional optimization of a noisy function using a kriging metamodel
    Sambakhe, Diarietou
    Rouan, Lauriane
    Bacro, Jean-Noel
    Goze, Eric
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (03) : 615 - 636
  • [37] Conditional optimization of a noisy function using a kriging metamodel
    Diariétou Sambakhé
    Lauriane Rouan
    Jean-Noël Bacro
    Eric Gozé
    Journal of Global Optimization, 2019, 73 : 615 - 636
  • [38] A sequential sampling strategy for multiresponse radial basis function
    Zhang, Yahui
    Jiang, Ping
    Hu, Jiexiang
    Zhou, Qi
    PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2016, : 206 - 210
  • [39] Cooperative learning for radial basis function networks using particle swarm optimization
    Alexandridis, Alex
    Chondrodima, Eva
    Sarimveis, Haralambos
    APPLIED SOFT COMPUTING, 2016, 49 : 485 - 497
  • [40] Sequential approximate robust design optimization using radial basis function network
    Satoshi Kitayama
    Koetsu Yamazaki
    International Journal of Mechanics and Materials in Design, 2014, 10 : 313 - 328