General theory of global smoothness and approximation by smooth singular operators

被引:0
|
作者
Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, United States [1 ]
机构
来源
Math. Comput. Model. | / 1-2卷 / 344-358期
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Monte Carlo approximation of weakly singular integral operators
    Heinrich, S
    JOURNAL OF COMPLEXITY, 2006, 22 (02) : 192 - 219
  • [42] Quality of approximation by fourier means in terms of general moduli of smoothness
    Artamonov, S. Yu.
    MATHEMATICAL NOTES, 2015, 98 (1-2) : 3 - 10
  • [43] Quality of approximation by fourier means in terms of general moduli of smoothness
    S. Yu. Artamonov
    Mathematical Notes, 2015, 98 : 3 - 10
  • [44] A study on pointwise approximation by double singular integral operators
    Uysal, Gumrah
    Yilmaz, Mine Menekse
    Ibikli, Ertan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [45] STATISTICAL APPROXIMATION BY DOUBLE PICARD SINGULAR INTEGRAL OPERATORS
    Anastassiou, George A.
    Duman, Oktay
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (01): : 3 - 20
  • [46] A study on pointwise approximation by double singular integral operators
    Gumrah Uysal
    Mine Menekse Yilmaz
    Ertan Ibikli
    Journal of Inequalities and Applications, 2015
  • [47] Approximation of general smooth convex bodies
    Boroczky, K
    ADVANCES IN MATHEMATICS, 2000, 153 (02) : 325 - 341
  • [48] Stability of approximation under the action of singular integral operators
    S. V. Kislyakov
    N. Ya. Kruglyak
    Functional Analysis and Its Applications, 2006, 40 : 285 - 297
  • [49] Quantitative Approximation by Fractional Generalized Discrete Singular Operators
    George A. Anastassiou
    Merve Kester
    Results in Mathematics, 2015, 67 : 281 - 301
  • [50] Quantitative uniform approximation by generalized discrete singular operators
    Anastassiou, George A.
    Kester, Merve
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (01): : 39 - 60