Preparing remote states for genuine quantum networks

被引:0
|
作者
Chen, Shih-Hsuan [1 ,2 ]
Hsu, Chan [1 ,2 ]
Kao, Yu-Chien [1 ,2 ]
Lee, Bing-Yuan [1 ,2 ]
Liu, Yuan-Sung [1 ,2 ]
Chen, Yueh-Nan [2 ,3 ]
Li, Che-Ming [1 ,2 ,4 ]
机构
[1] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Ctr Quantum Frontiers Res & Technol, Tainan 70101, Taiwan
[3] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
[4] Ctr Quantum Sci & Technol, Hsinchu 30013, Taiwan
来源
COMMUNICATIONS PHYSICS | 2024年 / 7卷 / 01期
关键词
Quantum communication - Quantum electronics - Quantum entanglement - Quantum optics - Statistical mechanics;
D O I
10.1038/s42005-024-01844-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum networks typically comprise quantum channels, repeaters, and end nodes. Remote state preparation (RSP) allows one end node to prepare the states of the other end nodes remotely. While quantum discord has recently been recognized as necessary for RSP, it does not guarantee the practical implementation of RSP in quantum networks surpasses any classical method. Herein, we theoretically introduce and experimentally study a quantum resource that we call the RSP capability. This resource validates all the static and dynamic elements required to enable genuine quantum networks where the RSP's implementation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies, including the static resources of Einstein-Podolsky-Rosen pairs and the dynamic resources of quantum channels and repeaters. Our experiment measures the RSP capability to demonstrate the transition between classical and nonclassical RSP depending on the photon-pair qualities. It shows that quantum discord does not confirm a nonclassical RSP, but the RSP capability does. These results help reveal the quantum advantages that emerge when networking RSP is in play. The authors introduce and experimentally study a quantum resource called the remote state preparation capability. This resource validates all static and dynamic elements required to enable quantum networks where the implementation of remote state preparation can outperform any classical emulation of entanglement- and qubit-unitaries-free strategies.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Adiabatically preparing quantum dot spin states in the Voigt geometry
    Paspalakis, Emmanuel
    Economou, Sophia E.
    Carreno, Fernando
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (02)
  • [32] Preparing ground states with a broken symmetry with variational quantum algorithms
    Vogt, Nicolas
    Zanker, Sebastian
    Reiner, Jan-Michael
    Marthaler, Michael
    Eckl, Thomas
    Marusczyk, Anika
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (03)
  • [33] Quantum logic for genuine quantum simulators
    Pavicic, M
    QUANTUM COMPUTING, 2000, 4047 : 90 - 96
  • [34] A New Quantum Proxy Signature Model Based on a Series of Genuine Entangled States
    Hai-Yan Zhang
    Long Zhang
    Ke-Jia Zhang
    International Journal of Theoretical Physics, 2019, 58 : 591 - 604
  • [35] Preparing tunable Bell-diagonal states on a quantum computer
    Mauro B. Pozzobom
    Jonas Maziero
    Quantum Information Processing, 2019, 18
  • [36] The faithful remote preparation of general quantum states
    Luo, Ming-Xing
    Deng, Yun
    Chen, Xiu-Bo
    Yang, Yi-Xian
    QUANTUM INFORMATION PROCESSING, 2013, 12 (01) : 279 - 294
  • [37] Preparing tunable Bell-diagonal states on a quantum computer
    Pozzobom, Mauro B.
    Maziero, Jonas
    QUANTUM INFORMATION PROCESSING, 2019, 18 (05)
  • [38] Preparing topological projected entangled pair states on a quantum computer
    Schwarz, Martin
    Temme, Kristan
    Verstraete, Frank
    Perez-Garcia, David
    Cubitt, Toby S.
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [39] Preparing a Mechanical Oscillator in Non-Gaussian Quantum States
    Khalili, Farid
    Danilishin, Stefan
    Miao, Haixing
    Mueller-Ebhardt, Helge
    Yang, Huan
    Chen, Yanbei
    PHYSICAL REVIEW LETTERS, 2010, 105 (07)
  • [40] Analytical expression of genuine tripartite quantum discord for symmetrical X-states
    Beggi, Andrea
    Buscemi, Fabrizio
    Bordone, Paolo
    QUANTUM INFORMATION PROCESSING, 2015, 14 (02) : 573 - 592