Named entity recognition by using maximum entropy

被引:0
|
作者
SCSE, VIT University, Vellore, India [1 ]
机构
来源
关键词
Designator - Entity - Gazetteer - Name entity recognition - Natural languages;
D O I
10.14257/ijdta.2015.8.2.05
中图分类号
学科分类号
摘要
Named Entity Recognition (NER) is responsible for extracting and classifying some designators in the given specified text which can be name, location, organization etc. Since the last decade or so, researchers are greatly involved in this area as far as their interests are concerned. It is important procedure to extract the entities in a specified text based on a language which is termed as Natural Language. This language consists of various entities and the collection of such entities is called entity set. These entity sets are maintained in a uniform database called as gazetteer. In this paper we present a methodology called maximum entropy to retrieve the entity sets from the database. The machine is trained in such a way that it will retrieve the words which has the maximum entropy amongst all and has proved to be fastest method to extract and classify the entity sets from the database. The advantages of proposed method include sequence tagging which means this method has increased the freedom of choosing features to represent observations. © 2015 SERSC.
引用
收藏
相关论文
共 50 条
  • [41] NAMED ENTITY RECOGNITION FOR POLISH
    Marcinczuk, Michal
    Wawer, Aleksander
    POZNAN STUDIES IN CONTEMPORARY LINGUISTICS, 2019, 55 (02): : 239 - 269
  • [42] NAMED ENTITY RECOGNITION FOR ROMANIAN
    Iftene, Adrian
    Trandabat, Diana
    Toader, Mihai
    Corici, Marius
    KEPT 2011: KNOWLEDGE ENGINEERING PRINCIPLES AND TECHNIQUES, 2011, : 49 - 60
  • [43] Named Entity Recognition Approaches
    Mansouri, Alireza
    Affendey, Lilly Suriani
    Mamat, Ali
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (02): : 339 - 344
  • [44] An Overview of Named Entity Recognition
    Sun, Peng
    Yang, Xuezhen
    Zhao, Xiaobing
    Wang, Zhijuan
    2018 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2018, : 273 - 278
  • [45] Arabic Named Entity Recognition
    Benajiba, Yassine
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2010, (44): : 151 - 152
  • [46] FINANCIAL NAMED ENTITY RECOGNITION BASED ON CONDITIONAL RANDOM FIELDS AND INFORMATION ENTROPY
    Wang, Shuwei
    Xu, Ruifeng
    Liu, Bin
    Gui, Lin
    Zhou, Yu
    PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2014, : 838 - 843
  • [47] Dynamic Named Entity Recognition
    Luiggi, Tristan
    Soulier, Laure
    Guigue, Vincent
    Jendoubi, Siwar
    Baelde, Aurelien
    38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 890 - 897
  • [48] Speech recognition of a named entity
    Tomita, T
    Okimoto, Y
    Yamamoto, H
    Sagisaka, Y
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 1057 - 1060
  • [49] Named Entity Recognition in Query
    Guo, Jiafeng
    Xu, Gu
    Cheng, Xueqi
    Li, Hang
    PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2009, : 267 - 274
  • [50] A COMPARATIVE STUDY OF WORD REPRESENTATION METHODS WITH CONDITIONAL RANDOM FIELDS AND MAXIMUM ENTROPY MARKOV FOR BIO-NAMED ENTITY RECOGNITION
    Abdi, Maan Tareq
    Mohd, Masnizah
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2018, 31 (05) : 15 - 30