Constructing pairing-friendly genus 2 curves with split Jacobian

被引:0
|
作者
Drylo, Robert [1 ,2 ]
机构
[1] Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warszawa, Poland
[2] Warsaw School of Economics, al. Niepodleglości 162, 02-554 Warszawa, Poland
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Public key cryptography
引用
收藏
页码:431 / 453
相关论文
共 50 条
  • [21] Generating pairing-friendly parameters for the CM construction of genus 2 curves over prime fields
    Kristin Lauter
    Ning Shang
    Designs, Codes and Cryptography, 2013, 67 : 341 - 355
  • [22] Pairing-Friendly Elliptic Curves with Various Discriminants
    Kang, Woo Sug
    Kim, Ki Taek
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2010, E93A (06) : 1032 - 1038
  • [23] Fast Hashing to G2 on Pairing-Friendly Curves
    Scott, Michael
    Benger, Naomi
    Charlemagne, Manuel
    Perez, Luis J. Dominguez
    Kachisa, Ezekiel J.
    PAIRING-BASED CRYPTOGRAPHY - PAIRING 2009, 2009, 5671 : 102 - 113
  • [24] Revisiting Cycles of Pairing-Friendly Elliptic Curves
    Belles-Munoz, Marta
    Jimenez Urroz, Jorge
    Silva, Javier
    ADVANCES IN CRYPTOLOGY - CRYPTO 2023, PT II, 2023, 14082 : 3 - 37
  • [25] Pairing-friendly elliptic curves of prime order
    Barreto, PSLM
    Naehrig, M
    SELECTED AREAS IN CRYPTOGRAPHY, 2006, 3897 : 319 - 331
  • [26] CURVES OF GENUS-2 WITH SPLIT JACOBIAN
    KUHN, RM
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 307 (01) : 41 - 49
  • [27] A New Method for Constructing Pairing-Friendly Abelian Surfaces
    Drylo, Robert
    PAIRING-BASED CRYPTOGRAPHY-PAIRING 2010, 2010, 6487 : 298 - 311
  • [28] Optimal pairing computation over families of pairing-friendly elliptic curves
    Soo-Kyung Eom
    Hyang-Sook Lee
    Cheol-Min Park
    Applicable Algebra in Engineering, Communication and Computing, 2011, 22 : 235 - 248
  • [29] Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field
    Kachisa, Ezekiel J.
    Schaefer, Edward F.
    Scott, Michael
    PAIRING-BASED CRYPTOGRAPHY - PAIRING 2008, 2008, 5209 : 126 - +
  • [30] TNFS resistant families of pairing-friendly elliptic curves
    Fotiadis, Georgios
    Konstantinou, Elisavet
    THEORETICAL COMPUTER SCIENCE, 2019, 800 (73-89) : 73 - 89