Physics-based linear regression for high-dimensional forward uncertainty quantification

被引:0
|
作者
Wang, Ziqi [1 ]
机构
[1] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
关键词
High-dimensional regression; Physics-based surrogate modeling; Uncertainty quantification;
D O I
10.1016/j.jcp.2024.113668
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce linear regression using physics-based basis functions optimized through the geometry of an inner product space. This method addresses the challenge of surrogate modeling with high-dimensional input, as the physics-based basis functions encode problem-specific information. We demonstrate the method using two proof-of-concept stochastic dynamic examples.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] TESTING HIGH-DIMENSIONAL REGRESSION COEFFICIENTS IN LINEAR MODELS
    Zhao, Alex
    Li, Changcheng
    Li, Runze
    Zhang, Zhe
    ANNALS OF STATISTICS, 2024, 52 (05): : 2034 - 2058
  • [32] Consistent group selection in high-dimensional linear regression
    Wei, Fengrong
    Huang, Jian
    BERNOULLI, 2010, 16 (04) : 1369 - 1384
  • [33] CANONICAL THRESHOLDING FOR NONSPARSE HIGH-DIMENSIONAL LINEAR REGRESSION
    Silin, Igor
    Fan, Jianqing
    ANNALS OF STATISTICS, 2022, 50 (01): : 460 - 486
  • [34] Robust Estimation of High-Dimensional Linear Regression With Changepoints
    Cui, Xiaolong
    Geng, Haoyu
    Wang, Zhaojun
    Zou, Changliang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (10) : 7297 - 7319
  • [35] Robust linear regression for high-dimensional data: An overview
    Filzmoser, Peter
    Nordhausen, Klaus
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (04)
  • [36] A global homogeneity test for high-dimensional linear regression
    Charbonnier, Camille
    Verzelen, Nicolas
    Villers, Fanny
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 318 - 382
  • [37] Tests for high-dimensional partially linear regression models
    Shi, Hongwei
    Yang, Weichao
    Sun, Bowen
    Guo, Xu
    STATISTICAL PAPERS, 2025, 66 (03)
  • [38] Empirical likelihood for high-dimensional linear regression models
    Hong Guo
    Changliang Zou
    Zhaojun Wang
    Bin Chen
    Metrika, 2014, 77 : 921 - 945
  • [39] THE TAP FREE ENERGY FOR HIGH-DIMENSIONAL LINEAR REGRESSION
    Qiu, Jiaze
    Sen, Subhabrata
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (04): : 2643 - 2680
  • [40] High-dimensional analysis of variance in multivariate linear regression
    Lou, Zhipeng
    Zhang, Xianyang
    Wu, Wei Biao
    BIOMETRIKA, 2023, 110 (03) : 777 - 797