Physics-based linear regression for high-dimensional forward uncertainty quantification

被引:0
|
作者
Wang, Ziqi [1 ]
机构
[1] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
关键词
High-dimensional regression; Physics-based surrogate modeling; Uncertainty quantification;
D O I
10.1016/j.jcp.2024.113668
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce linear regression using physics-based basis functions optimized through the geometry of an inner product space. This method addresses the challenge of surrogate modeling with high-dimensional input, as the physics-based basis functions encode problem-specific information. We demonstrate the method using two proof-of-concept stochastic dynamic examples.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Inverse regression-based uncertainty quantification algorithms for high-dimensional models: Theory and practice
    Li, Weixuan
    Lin, Guang
    Li, Bing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 : 259 - 278
  • [2] Exact results on high-dimensional linear regression via statistical physics
    Mozeika, Alexander
    Sheikh, Mansoor
    Aguirre-Lopez, Fabian
    Antenucci, Fabrizio
    Coolen, Anthony C. C.
    PHYSICAL REVIEW E, 2021, 103 (04)
  • [3] An Improved Forward Regression Variable Selection Algorithm for High-Dimensional Linear Regression Models
    Xie, Yanxi
    Li, Yuewen
    Xia, Zhijie
    Yan, Ruixia
    IEEE ACCESS, 2020, 8 (08): : 129032 - 129042
  • [4] Uncertainty Quantification for Modern High-Dimensional Regression via Scalable Bayesian Methods
    Rajaratnam, Bala
    Sparks, Doug
    Khare, Kshitij
    Zhang, Liyuan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (01) : 174 - 184
  • [5] Uncertainty Quantification of Detonation with High-dimensional Parameter Uncertainty
    Liang X.
    Chen J.
    Wang R.
    Binggong Xuebao/Acta Armamentarii, 2020, 41 (04): : 692 - 701
  • [6] High-Dimensional Uncertainty Quantification in Electrical Impedance Tomography Forward Problem Based on Deep Neural Network
    Zhao, Yingge
    Wang, Lingyue
    Li, Ying
    He, Renjie
    Ma, Chonglei
    IEEE ACCESS, 2023, 11 : 54957 - 54967
  • [7] High-Dimensional Uncertainty Quantification in a Hybrid Data
    Valeti, Bhavana
    Pakzad, Shamim N.
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2021, 7 (03)
  • [8] High-Dimensional Uncertainty Quantification via Tensor Regression With Rank Determination and Adaptive Sampling
    He, Zichang
    Zhang, Zheng
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2021, 11 (09): : 1317 - 1328
  • [9] High-Dimensional Uncertainty Quantification via Active and Rank-Adaptive Tensor Regression
    He, Zichang
    Zhang, Zheng
    2020 IEEE 29TH CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS (EPEPS 2020), 2020,
  • [10] Quantile forward regression for high-dimensional survival data
    Lee, Eun Ryung
    Park, Seyoung
    Lee, Sang Kyu
    Hong, Hyokyoung G.
    LIFETIME DATA ANALYSIS, 2023, 29 (04) : 769 - 806