High-Performance stacking ensemble learning for thermoelectric figure-of-merit prediction

被引:0
|
作者
Wang, Yuelin [1 ,3 ]
Zhong, Chengquan [1 ,3 ]
Zhang, Jingzi [1 ,3 ,4 ]
Yao, Honghao [1 ,3 ]
Chen, Junjie [4 ]
Lin, Xi [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[2] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Blockchain Dev & Res Inst, Shenzhen 518055, Guangdong, Peoples R China
[4] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Guangdong, Peoples R China
关键词
Thermoelectric materials; zT; Machine Learning; Stacking ensemble model;
D O I
10.1016/j.matdes.2024.113552
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoelectric materials, which convert thermal energy directly into electricity, hold promise for sustainable energy applications. However, accurately predicting their efficiency, quantified by the figure of merit (zT), remains challenging, especially for doped materials. Here we present a machine learning (ML) approach, the stacking model, that significantly improves zT prediction accuracy for doped thermoelectric. By combining five regression models through stacking ensemble learning and introducing 100 coordination number features alongside conventional features, our model achieves a coefficient of determination (R2) value of 0.970. This high performance demonstrates unprecedented sensitivity to zT variations due to doping. We validate our model using an expanded dataset of over 230 new materials from recent literature. The model identifies 43 potential high-zT materials, including Pb0.97K0.03Te0.65S0.25Se0.1 with a predicted zT of 1.9. Density functional theory calculations confirm the superior electrical properties of this compound. Our approach offers an efficient strategy for largescale screening of high-performance thermoelectric materials, potentially accelerating their discovery and development for energy applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Effect of Stacking Faults on the Thermoelectric Figure of Merit of Si Nanowires
    Vuttivorakulchai, Kantawong
    Luisier, Mathieu
    Schenk, Andreas
    2019 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2019), 2019, : 231 - 234
  • [32] High nonlinear figure-of-merit amorphous silicon waveguides
    Matres, J.
    Ballesteros, G. C.
    Gautier, P.
    Fedeli, J-M
    Marti, J.
    Oton, C. J.
    OPTICS EXPRESS, 2013, 21 (04): : 3932 - 3940
  • [33] Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide
    Zhang, Qinyong
    Wang, Hui
    Liu, Weishu
    Wang, Hengzhi
    Yu, Bo
    Zhang, Qian
    Tian, Zhiting
    Ni, George
    Lee, Sangyeop
    Esfarjani, Keivan
    Chen, Gang
    Ren, Zhifeng
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (01) : 5246 - 5251
  • [34] Substantial enhancement in thermoelectric figure-of-merit of half-Heusler ZrNiPb alloys
    Sagar, Amardeep
    Bhardwaj, Aman
    Lamba, Manoj
    Novitskii, Andrei
    Khovaylo, Vladimir
    Patnaik, Satyabrata
    BULLETIN OF MATERIALS SCIENCE, 2024, 47 (03)
  • [35] Thermoelectric figure-of-merit of metastable crystalline ST12 germanium allotrope
    Meng, Han
    Ohnishi, Masato
    An, Meng
    Shiomi, Junichiro
    MATERIALS TODAY PHYSICS, 2023, 38
  • [36] Enhancement in figure-of-merit with superlattice structures for thin-film thermoelectric devices
    Venkatasubramanian, R
    Colpitts, T
    THERMOELECTRIC MATERIALS - NEW DIRECTIONS AND APPROACHES, 1997, 478 : 73 - 84
  • [37] High figure-of-merit in the heavy-fermion UN2system for radioisotope thermoelectric applications
    Zhou, Z. Z.
    Fan, D. D.
    Liu, H. J.
    Liu, J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (01)
  • [38] High temperature thermoelectric properties and figure-of-merit of sintered Nd2−xCexCuO4
    M. Yasukawa
    N. Murayama
    Journal of Materials Science, 1997, 32 : 6489 - 6494
  • [39] Analysis of Nanostructuring in High Figure-of-Merit Ag1-xPbmSbTe2+m Thermoelectric Materials
    Cook, Bruce A.
    Kramer, Matthew J.
    Harringa, Joel L.
    Han, Mi-Kyung
    Chung, Duck-Young
    Kanatzidis, Mercouri G.
    ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (08) : 1254 - 1259
  • [40] High figure-of-merit laterally fluorinated biphenyltolane-isothiocyanates
    Gauza, Sebastian
    Zhao, Yang
    Le Cor, Tatiana
    Wu, Shin-Tson
    Ziolek, Anna
    Dabrowski, Roman
    Catanescu, Otilia
    Chien, Liang-Chy
    Hsu, Chain-Shu
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2007, 479 (169/[1207]-179/[1217]) : 1207 - +