Tracking of atomic planes in atom probe tomography

被引:0
|
作者
Koelling, Sebastian [1 ]
Assali, Simone [1 ]
Nadal, Guillaume [1 ]
Isheim, Dieter [2 ,3 ]
Seidman, David N. [2 ,3 ]
Moutanabbir, Oussama [1 ]
机构
[1] Ecole Polytech Montreal, Dept Engn Phys, CP 6079,Succ Ctr Ville, Montreal, PQ H3C 3A7, Canada
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Northwestern Univ Ctr Atom Probe Tomog NUCAPT, Evanston, IL 60208 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
RECONSTRUCTION; ALGORITHM; ORIENTATION; MICROSCOPY;
D O I
10.1063/5.0226890
中图分类号
O59 [应用物理学];
学科分类号
摘要
Atom probe tomography is a ubiquitous method in materials science and engineering capable of revealing the atomic-level three-dimensional composition of a plethora of materials. Beside the nature of atoms forming the analyzed material, atom probe data are also known to contain information on the crystallography. In particular, remnants of the atomic plane sets forming on the surface of the tip-shaped samples are commonly found in atom probe data sets of crystalline metallic materials. The plane remnants can be utilized to correlate the nano-scale chemical analysis that atom probe tomography provides with the crystallographic structure on the same scale. We describe a protocol to reveal and track the atomic planes systematically from raw atom probe data. We demonstrate for both metals and semiconductors that the extracted crystallographic can be used to calibrate a dynamic reconstruction of the respective data set acquired in atom probe tomography. Furthermore, we utilize the crystal planes to make precise measurements of layer thicknesses in atom probe data of semiconductor heterostructures. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Atom Probe Tomography on Semiconductor Devices
    Khan, Mansoor Ali
    Ringer, Simon P.
    Zheng, Rongkun
    ADVANCED MATERIALS INTERFACES, 2016, 3 (12):
  • [42] Atom probe tomography for biomaterials and biomineralization
    Grandfield, Kathryn
    Micheletti, Chiara
    Deering, Joseph
    Arcuri, Gabriel
    Tang, Tengteng
    Langelier, Brian
    ACTA BIOMATERIALIA, 2022, 148 : 44 - 60
  • [43] Atom probe tomography of metallic nanostructures
    Kazuhiro Hono
    Dierk Raabe
    Simon P. Ringer
    David N. Seidman
    MRS Bulletin, 2016, 41 : 23 - 29
  • [44] Sensitivity And Quantitativity In Atom Probe Tomography
    Danoix, F.
    Bostel, A.
    Leitner, H.
    Jessner, P.
    Sauvage, X.
    Goune, M.
    Danoix, R.
    MICROSCOPY AND MICROANALYSIS, 2009, 15 : 258 - 259
  • [45] Atom probe tomography for advanced metallization
    Mangelinck, D.
    Panciera, F.
    Hoummada, K.
    El Kousseifi, M.
    Perrin, C.
    Descoins, M.
    Portavoce, A.
    MICROELECTRONIC ENGINEERING, 2014, 120 : 19 - 33
  • [46] Atom probe tomography: Looking forward
    Gault, Baptiste
    Larson, David J.
    SCRIPTA MATERIALIA, 2018, 148 : 73 - +
  • [47] An Atom-Probe Tomography Primer
    Seidman, David N.
    Stiller, Krystyna
    MRS BULLETIN, 2009, 34 (10) : 717 - 724
  • [48] An Atom-Probe Tomography Primer
    David N. Seidman
    Krystyna Stiller
    MRS Bulletin, 2009, 34 : 717 - 724
  • [49] Spatial Resolution in Atom Probe Tomography
    Gault, Baptiste
    Moody, Michael P.
    De Geuser, Frederic
    La Fontaine, Alex
    Stephenson, Leigh T.
    Haley, Daniel
    Ringer, Simon P.
    MICROSCOPY AND MICROANALYSIS, 2010, 16 (01) : 99 - 110
  • [50] Atom probe tomography of nitride semiconductors
    Rigutti, L.
    Bonef, B.
    Speck, J.
    Tang, F.
    Oliver, R. A.
    SCRIPTA MATERIALIA, 2018, 148 : 75 - 81