Tracking of atomic planes in atom probe tomography

被引:0
|
作者
Koelling, Sebastian [1 ]
Assali, Simone [1 ]
Nadal, Guillaume [1 ]
Isheim, Dieter [2 ,3 ]
Seidman, David N. [2 ,3 ]
Moutanabbir, Oussama [1 ]
机构
[1] Ecole Polytech Montreal, Dept Engn Phys, CP 6079,Succ Ctr Ville, Montreal, PQ H3C 3A7, Canada
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Northwestern Univ Ctr Atom Probe Tomog NUCAPT, Evanston, IL 60208 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
RECONSTRUCTION; ALGORITHM; ORIENTATION; MICROSCOPY;
D O I
10.1063/5.0226890
中图分类号
O59 [应用物理学];
学科分类号
摘要
Atom probe tomography is a ubiquitous method in materials science and engineering capable of revealing the atomic-level three-dimensional composition of a plethora of materials. Beside the nature of atoms forming the analyzed material, atom probe data are also known to contain information on the crystallography. In particular, remnants of the atomic plane sets forming on the surface of the tip-shaped samples are commonly found in atom probe data sets of crystalline metallic materials. The plane remnants can be utilized to correlate the nano-scale chemical analysis that atom probe tomography provides with the crystallographic structure on the same scale. We describe a protocol to reveal and track the atomic planes systematically from raw atom probe data. We demonstrate for both metals and semiconductors that the extracted crystallographic can be used to calibrate a dynamic reconstruction of the respective data set acquired in atom probe tomography. Furthermore, we utilize the crystal planes to make precise measurements of layer thicknesses in atom probe data of semiconductor heterostructures. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Atomic worlds: Current state and future of atom probe tomography in geoscience
    Saxey, D. W.
    Moser, D. E.
    Piazolo, S.
    Reddy, S. M.
    Valley, J. W.
    SCRIPTA MATERIALIA, 2018, 148 : 115 - 121
  • [2] Reflections on the Spatial Performance of Atom Probe Tomography in the Analysis of Atomic Neighborhoods
    Gault, Baptiste
    Klaes, Benjamin
    Morgado, Felipe F.
    Freysoldt, Christoph
    Li, Yue
    De Geuser, Frederic
    Stephenson, Leigh T.
    Vurpillot, Francois
    MICROSCOPY AND MICROANALYSIS, 2022, 28 (04) : 1116 - 1126
  • [3] Atom probe tomography
    Miller, M. K.
    Forbes, R. G.
    MATERIALS CHARACTERIZATION, 2009, 60 (06) : 461 - 469
  • [4] Atom probe tomography
    Kareh, Kristina Maria
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [5] Atom probe tomography
    Nature Reviews Methods Primers, 1
  • [6] Atom Probe Tomography
    Felfer, P.
    Stephenson, L. T.
    Li, T.
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2018, 55 (08): : 515 - 526
  • [7] Atom Probe Tomography
    Shea, John J.
    IEEE ELECTRICAL INSULATION MAGAZINE, 2017, 33 (04) : 71 - 71
  • [8] Atom Probe Tomography - A High Throughput Screening Tool for Atomic Scale Chemistry
    Rajan, Krishna
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2011, 14 (03) : 198 - 205
  • [9] Atomic-scale analysis of light alloys using atom probe tomography
    Marceau, R. K. W.
    MATERIALS SCIENCE AND TECHNOLOGY, 2016, 32 (03) : 209 - 219
  • [10] Atomic-scale characterization of germanium isotopic multilayers by atom probe tomography
    Shimizu, Y.
    Takamizawa, H.
    Kawamura, Y.
    Uematsu, M.
    Toyama, T.
    Inoue, K.
    Haller, E. E.
    Itoh, K. M.
    Nagai, Y.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (02)