SPHERE view of the jet and the envelope of RY Tauri

被引:0
|
作者
Garufi, A. [1 ]
Podio, L. [1 ]
Bacciotti, F. [1 ]
Antoniucci, S. [2 ]
Boccaletti, A. [3 ]
Codella, C. [1 ,4 ]
Dougados, C. [4 ]
Ménard, F. [4 ]
Mesa, D. [5 ]
Meyer, M. [6 ]
Nisini, B. [2 ]
Schmid, H.M. [7 ]
Stolker, T. [7 ]
Baudino, J.L. [8 ]
Biller, B. [9 ]
Bonavita, M. [9 ]
Bonnefoy, M. [4 ]
Cantalloube, F. [10 ]
Chauvin, G. [4 ]
Cheetham, A. [11 ]
Desidera, S. [5 ]
D'Orazi, V. [5 ]
Feldt, M. [10 ]
Galicher, R. [3 ]
Grandjean, A. [4 ]
Gratton, R. [5 ]
Hagelberg, J. [7 ]
Lagrange, A.M. [4 ]
Langlois, M. [12 ]
Lannier, J. [4 ]
Lazzoni, C. [13 ]
Maire, A.L. [14 ]
Perrot, C. [3 ,15 ,16 ]
Rickman, E. [11 ]
Schmidt, T. [3 ]
Vigan, A. [17 ]
Zurlo, A. [17 ,18 ,19 ]
Delboulbé, A. [4 ]
Le Mignant, D. [17 ]
Fantinel, D. [5 ]
Möller-Nilsson, O. [10 ]
Weber, L. [11 ]
Sauvage, J.-F. [17 ]
机构
[1] INAF, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, Firenze,50125, Italy
[2] INAF - Osservatorio Astronomico di Roma, Via Frascati 33, Monte Porzio Catone (RM),00078, Italy
[3] LESIA, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, Universite Paris Diderot, Sorbonne Paris Cite, 5 place Jules Janssen, Meudon,92195, France
[4] Universite Grenoble Alpes, CNRS, IPAG, Grenoble,38000, France
[5] INAF - Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, Padova,35122, Italy
[6] Department of Astronomy, University of Michigan, 1085 S. University Ave, Ann Arbor,MI,48109-1107, United States
[7] Institute for Particle Physics and Astrophysics, ETH Zurich, Wolfgang-Pauli-Strasse 27, Zurich,8093, Switzerland
[8] Department of Physics, University of Oxford, Oxford, United Kingdom
[9] Institute for Astronomy, University of Edinburgh, Edinburgh,EH9 3HJ, United Kingdom
[10] Max Planck Institute for Astronomy, Konigstuhl 17, Heidelberg,69117, Germany
[11] Geneva Observatory, University of Geneva, Ch. des Maillettes 51, Versoix,1290, Switzerland
[12] CRAL CNRS, Universite Lyon 1, 9 avenue Charles Andre, Saint Genis Laval Cedex,69561, France
[13] Universita Degli Studi di Padova, Dipartimento di Fisica e Astronomia, vicolo dell'osservatorio 3, Padova,35122, Italy
[14] STAR Institute, University of Liege, Allee du Six Aout 19c, Liege,4000, Belgium
[15] Instituto de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaiso, Av. Gran Bretana 1111, Valparaiso, Chile
[16] Nucleo Milenio Formacion Planetaria - NPF, Universidad de Valparaiso, Av. Gran Bretana 1111, Valparaiso, Chile
[17] Aix Marseille Universite, CNRS, LAM - Laboratoire d'Astrophysique de Marseille, UMR 7326, Marseille,13388, France
[18] Nucleo de Astronomia, Facultad de Ingenieria y Ciencias, Universidad Diego Portales, Av. Ejercito 441, Santiago, Chile
[19] Escuela de Ingenieria Industrial, Facultad de Ingenieria y Ciencias, Universidad Diego Portales, Av. Ejercito 441, Santiago, Chile
来源
Astronomy and Astrophysics | 2019年 / 628卷
关键词
Giant stars;
D O I
暂无
中图分类号
学科分类号
摘要
Context. Jets are rarely associated with pre-main sequence intermediate-mass stars. This contrasts with the frequent detection of jets in lower mass or younger stars. Optical and near-IR observations of jet-driving sources are often hindered by the presence of a natal envelope. Aims. Jets around partly embedded sources are a useful diagnostic to constrain the geometry of the concealed protoplanetary disk. We intend to clarify how the jet-driving mechanisms are affected by both spatial anisotropies and episodic variations at the (sub-)au scale from the star. Methods. We obtained a rich set of high-contrast VLT/SPHERE observations from 0.6 to 2.2 μm of the young intermediate-mass star RY Tau. Given the proximity to the Sun of this source, our images have the highest spatial resolution ever obtained for an atomic jet (down to ~4 au). Results. Optical observations in polarized light show no sign of the protoplanetary disk detected by ALMA. Instead, we observed a diffuse signal resembling a remnant envelope with an outflow cavity. The jet is detected in the Hα, [S » II] at 1.03 μm, He » I at 1.08 μm, and [Fe » II] lines in the 1.25 μm and 1.64 μm. The jet appears to be wiggling and its radial width increasing with the distance is complementary to the shape of the outflow cavity suggesting a strong interaction with jet and envelope. Through the estimated tangential velocity (~100 km s-1), we revealed a possible connection between the launching time of the jet substructures and the stellar activity of RY Tau. Conclusions. RY Tau is at an intermediate stage toward the dispersal of the natal envelope. This source shows episodic increases of mass accretion and ejection similarly to other known intermediate-mass stars. The amount of observed jet wiggle is consistent with the presence of a precessing disk warp or misaligned inner disk that would be induced by an unseen planetary or sub-stellar companion at sub- or few-au scales respectively. The high disk mass of RY Tau and of two other jet-driving intermediate-mass stars, HD 163296 and MWC480, suggests that massive, full disks are more efficient at launching prominent jets. © ESO 2019.
引用
收藏
相关论文
共 50 条
  • [31] The WISE View of RV Tauri Stars
    Gezer, Ilknur
    Van Winckel, Hans
    Bozkurt, Zeynep
    WHY GALAXIES CARE ABOUT AGB STARS III: A CLOSER LOOK IN SPACE AND TIME, 2015, 497 : 223 - 224
  • [32] Dynamics of Wind and Variations of Circumstellar Extinction in the Accreting T Tauri star RY Tau
    Petrov, P. P.
    Babina, E. V.
    Artemenko, S. A.
    STARS: FROM COLLAPSE TO COLLAPSE, 2017, 510 : 94 - 97
  • [33] Analysis of the HST ultraviolet spectra for T Tauri stars: RY Tau and HD 115043
    S. A. Lamzin
    Astronomy Letters, 2000, 26 : 589 - 599
  • [34] Analysis of the HST ultraviolet spectra for T Tauri Stars: RY Tau and HD 115043
    Lamzin, SA
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2000, 26 (09): : 589 - 599
  • [35] Polarization of thermal molecular lines in the envelope of IK Tauri
    Vlemmings, W. H. T.
    Ramstedt, S.
    Rao, R.
    Maercker, M.
    ASTRONOMY & ASTROPHYSICS, 2012, 540
  • [36] Nonradial and nonpolytropic astrophysical outflows XI. Simulations of the circumstellar environment of RY Tauri
    Sauty, C.
    de Albuquerque, R. M. G.
    Cayatte, V
    Lima, J. J. G.
    Gameiro, J. F.
    ASTRONOMY & ASTROPHYSICS, 2022, 664
  • [37] Resolving the Inner Arcsecond of the RY Tau Jet with HST
    Skinner, Stephen L.
    Schneider, P. Christian
    Audard, Marc
    Guedel, Manuel
    ASTROPHYSICAL JOURNAL, 2018, 855 (02):
  • [38] Orbits in the T Tauri triple system observed with SPHERE
    Koehler, R.
    Kasper, M.
    Herbst, T. M.
    Ratzka, T.
    Bertrang, G. H. -M.
    ASTRONOMY & ASTROPHYSICS, 2016, 587
  • [39] RY theory investigation of phase coexistence in hard sphere mixtures
    Caccamo, C
    Pellicane, G
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 235 (1-2) : 149 - 158
  • [40] Discovery of a bipolar X-ray jet from the T Tauri star DG Tauri
    Güdel, M.
    Skinner, S.L.
    Audard, M.
    Briggs, K.R.
    Cabrit, S.
    Astronomy and Astrophysics, 1600, 478 (03): : 797 - 807