XOptimal design of power transformers using quantum-behaved particle swarm optimization

被引:0
|
作者
Pan, Zaiping [1 ]
Zhang, Zhen [1 ]
Pan, Xiaohong [1 ]
机构
[1] Zhejiang University, Hangzhou 310027, China
关键词
Computational efficiency - Particle swarm optimization (PSO) - Problem solving - Optimal systems - Integer programming;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the transformer design optimization(TDO) problem which is a complex mixed integer nonlinear problem. Firstly, the enumeration method, which is the most robust method to find the global optimal solution, is researched to solve TDO problem. The low computation efficiency makes the enumeration method difficult to be used in industry. Quantum particle swarm optimization(QPSO) is then introduced to improve the computation efficiency, and meanwhile a new constrain handling method is proposed for multi-constrains problems. Based on the calculated results of the enumeration method, the control parameter of QPSO is analyzed under both fixed value strategy and linear variation strategy. According to the calculated results, some conclusions concerning the selection of the control parameter are drawn. The case study shows that the computation efficiency of QPSO is far better than the enumeration method. Meanwhile QPSO keeps an excellent ability to find the optimal solution.
引用
收藏
页码:42 / 47
相关论文
共 50 条
  • [21] Quantum-behaved particle swarm optimization based on solitons
    Fallahi, Saeed
    Taghadosi, Mohamadreza
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [22] Quantum-behaved particle swarm optimization with chaotic search
    Yang, Kaiqiao
    Nomura, Hirosato
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (07): : 1963 - 1970
  • [23] An Improved Quantum-Behaved Particle Swarm Optimization Algorithm
    Yang, Jie
    Xie, Jiahua
    2010 2ND INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (CAR 2010), VOL 2, 2010, : 159 - 162
  • [24] An improved quantum-behaved particle swarm optimization algorithm
    Li, Panchi
    Xiao, Hong
    APPLIED INTELLIGENCE, 2014, 40 (03) : 479 - 496
  • [25] Quantum-behaved Particle Swarm Optimization clustering algorithm
    Sun, Jun
    Xu, Wenbo
    Ye, Bin
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 340 - 347
  • [26] Quantum-behaved Particle Swarm Optimization with mutation operator
    Liu, J
    Xu, WB
    Sun, J
    ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 237 - 240
  • [27] Parameter selection of quantum-behaved Particle Swarm Optimization
    Sun, J
    Xu, WB
    Liu, J
    ADVANCES IN NATURAL COMPUTATION, PT 3, PROCEEDINGS, 2005, 3612 : 543 - 552
  • [28] An improved cooperative quantum-behaved particle swarm optimization
    Li, Yangyang
    Xiang, Rongrong
    Jiao, Licheng
    Liu, Ruochen
    SOFT COMPUTING, 2012, 16 (06) : 1061 - 1069
  • [29] An improved cooperative quantum-behaved particle swarm optimization
    Yangyang Li
    Rongrong Xiang
    Licheng Jiao
    Ruochen Liu
    Soft Computing, 2012, 16 : 1061 - 1069
  • [30] A Modified Quantum-Behaved Particle Swarm Optimization for Constrained Optimization
    Liu, Huaying
    Xu, Shaohua
    Liang, Xingzhu
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION WORKSHOP: IITA 2008 WORKSHOPS, PROCEEDINGS, 2008, : 531 - +